Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idomrootle Structured version   Unicode version

Theorem idomrootle 36039
 Description: No element of an integral domain can have more than -th roots. (Contributed by Stefan O'Rear, 11-Sep-2015.)
Hypotheses
Ref Expression
idomrootle.b
idomrootle.e .gmulGrp
Assertion
Ref Expression
idomrootle IDomn
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem idomrootle
StepHypRef Expression
1 eqid 2422 . . 3 Poly1 Poly1
2 eqid 2422 . . 3 Poly1 Poly1
3 eqid 2422 . . 3 deg1 deg1
4 eqid 2422 . . 3 eval1 eval1
5 eqid 2422 . . 3
6 eqid 2422 . . 3 Poly1 Poly1
7 simp1 1005 . . 3 IDomn IDomn
8 isidom 18527 . . . . . . . . 9 IDomn Domn
98simplbi 461 . . . . . . . 8 IDomn
107, 9syl 17 . . . . . . 7 IDomn
11 crngring 17790 . . . . . . 7
1210, 11syl 17 . . . . . 6 IDomn
131ply1ring 18840 . . . . . 6 Poly1
1412, 13syl 17 . . . . 5 IDomn Poly1
15 ringgrp 17784 . . . . 5 Poly1 Poly1
1614, 15syl 17 . . . 4 IDomn Poly1
17 eqid 2422 . . . . . . 7 mulGrpPoly1 mulGrpPoly1
1817ringmgp 17785 . . . . . 6 Poly1 mulGrpPoly1
1914, 18syl 17 . . . . 5 IDomn mulGrpPoly1
20 simp3 1007 . . . . 5 IDomn
21 eqid 2422 . . . . . . 7 var1 var1
2221, 1, 2vr1cl 18809 . . . . . 6 var1 Poly1
2312, 22syl 17 . . . . 5 IDomn var1 Poly1
2417, 2mgpbas 17728 . . . . . 6 Poly1 mulGrpPoly1
25 eqid 2422 . . . . . 6 .gmulGrpPoly1 .gmulGrpPoly1
2624, 25mulgnncl 16772 . . . . 5 mulGrpPoly1 var1 Poly1 .gmulGrpPoly1var1 Poly1
2719, 20, 23, 26syl3anc 1264 . . . 4 IDomn .gmulGrpPoly1var1 Poly1
28 eqid 2422 . . . . . . 7 algScPoly1 algScPoly1
29 idomrootle.b . . . . . . 7
301, 28, 29, 2ply1sclf 18877 . . . . . 6 algScPoly1Poly1
3112, 30syl 17 . . . . 5 IDomn algScPoly1Poly1
32 simp2 1006 . . . . 5 IDomn
3331, 32ffvelrnd 6038 . . . 4 IDomn algScPoly1 Poly1
34 eqid 2422 . . . . 5 Poly1 Poly1
352, 34grpsubcl 16733 . . . 4 Poly1 .gmulGrpPoly1var1 Poly1 algScPoly1 Poly1 .gmulGrpPoly1var1Poly1algScPoly1 Poly1
3616, 27, 33, 35syl3anc 1264 . . 3 IDomn .gmulGrpPoly1var1Poly1algScPoly1 Poly1
373, 1, 2deg1xrcl 23029 . . . . . . . . . 10 algScPoly1 Poly1 deg1 algScPoly1
3833, 37syl 17 . . . . . . . . 9 IDomn deg1 algScPoly1
39 0xr 9694 . . . . . . . . . 10
4039a1i 11 . . . . . . . . 9 IDomn
41 nnre 10623 . . . . . . . . . . 11
4241rexrd 9697 . . . . . . . . . 10
43423ad2ant3 1028 . . . . . . . . 9 IDomn
443, 1, 29, 28deg1sclle 23059 . . . . . . . . . 10 deg1 algScPoly1
4512, 32, 44syl2anc 665 . . . . . . . . 9 IDomn deg1 algScPoly1
46 nngt0 10645 . . . . . . . . . 10
47463ad2ant3 1028 . . . . . . . . 9 IDomn
4838, 40, 43, 45, 47xrlelttrd 11464 . . . . . . . 8 IDomn deg1 algScPoly1
498simprbi 465 . . . . . . . . . . 11 IDomn Domn
50 domnnzr 18518 . . . . . . . . . . 11 Domn NzRing
5149, 50syl 17 . . . . . . . . . 10 IDomn NzRing
527, 51syl 17 . . . . . . . . 9 IDomn NzRing
53 nnnn0 10883 . . . . . . . . . 10
54533ad2ant3 1028 . . . . . . . . 9 IDomn
553, 1, 21, 17, 25deg1pw 23067 . . . . . . . . 9 NzRing deg1 .gmulGrpPoly1var1
5652, 54, 55syl2anc 665 . . . . . . . 8 IDomn deg1 .gmulGrpPoly1var1
5748, 56breqtrrd 4450 . . . . . . 7 IDomn deg1 algScPoly1 deg1 .gmulGrpPoly1var1
581, 3, 12, 2, 34, 27, 33, 57deg1sub 23055 . . . . . 6 IDomn deg1 .gmulGrpPoly1var1Poly1algScPoly1 deg1 .gmulGrpPoly1var1
5958, 56eqtrd 2463 . . . . 5 IDomn deg1 .gmulGrpPoly1var1Poly1algScPoly1
6059, 54eqeltrd 2507 . . . 4 IDomn deg1 .gmulGrpPoly1var1Poly1algScPoly1
613, 1, 6, 2deg1nn0clb 23037 . . . . 5 .gmulGrpPoly1var1Poly1algScPoly1 Poly1 .gmulGrpPoly1var1Poly1algScPoly1 Poly1 deg1 .gmulGrpPoly1var1Poly1algScPoly1
6212, 36, 61syl2anc 665 . . . 4 IDomn .gmulGrpPoly1var1Poly1algScPoly1 Poly1 deg1 .gmulGrpPoly1var1Poly1algScPoly1
6360, 62mpbird 235 . . 3 IDomn .gmulGrpPoly1var1Poly1algScPoly1 Poly1
641, 2, 3, 4, 5, 6, 7, 36, 63fta1g 23116 . 2 IDomn eval1.gmulGrpPoly1var1Poly1algScPoly1 deg1 .gmulGrpPoly1var1Poly1algScPoly1
65 eqid 2422 . . . . . . 7 s s
66 eqid 2422 . . . . . . 7 s s
67 fvex 5891 . . . . . . . . 9
6829, 67eqeltri 2503 . . . . . . . 8
6968a1i 11 . . . . . . 7 IDomn
704, 1, 65, 29evl1rhm 18919 . . . . . . . . . 10 eval1 Poly1 RingHom s
7110, 70syl 17 . . . . . . . . 9 IDomn eval1 Poly1 RingHom s
722, 66rhmf 17953 . . . . . . . . 9 eval1 Poly1 RingHom s eval1Poly1 s
7371, 72syl 17 . . . . . . . 8 IDomn eval1Poly1 s
7473, 36ffvelrnd 6038 . . . . . . 7 IDomn eval1.gmulGrpPoly1var1Poly1algScPoly1 s
7565, 29, 66, 7, 69, 74pwselbas 15386 . . . . . 6 IDomn eval1.gmulGrpPoly1var1Poly1algScPoly1
76 ffn 5746 . . . . . 6 eval1.gmulGrpPoly1var1Poly1algScPoly1 eval1.gmulGrpPoly1var1Poly1algScPoly1
7775, 76syl 17 . . . . 5 IDomn eval1.gmulGrpPoly1var1Poly1algScPoly1
78 fniniseg2 6020 . . . . 5 eval1.gmulGrpPoly1var1Poly1algScPoly1 eval1.gmulGrpPoly1var1Poly1algScPoly1 eval1.gmulGrpPoly1var1Poly1algScPoly1
7977, 78syl 17 . . . 4 IDomn eval1.gmulGrpPoly1var1Poly1algScPoly1 eval1.gmulGrpPoly1var1Poly1algScPoly1
8010adantr 466 . . . . . . . . 9 IDomn
81 simpr 462 . . . . . . . . 9 IDomn
824, 21, 29, 1, 2, 80, 81evl1vard 18924 . . . . . . . . . 10 IDomn var1 Poly1 eval1var1
83 idomrootle.e . . . . . . . . . 10 .gmulGrp
84 simpl3 1010 . . . . . . . . . . 11 IDomn
8584, 53syl 17 . . . . . . . . . 10 IDomn
864, 1, 29, 2, 80, 81, 82, 25, 83, 85evl1expd 18932 . . . . . . . . 9 IDomn .gmulGrpPoly1var1 Poly1 eval1.gmulGrpPoly1var1
87 simpl2 1009 . . . . . . . . . 10 IDomn
884, 1, 29, 28, 2, 80, 87, 81evl1scad 18922 . . . . . . . . 9 IDomn algScPoly1 Poly1 eval1algScPoly1
89 eqid 2422 . . . . . . . . 9
904, 1, 29, 2, 80, 81, 86, 88, 34, 89evl1subd 18929 . . . . . . . 8 IDomn .gmulGrpPoly1var1Poly1algScPoly1 Poly1 eval1.gmulGrpPoly1var1Poly1algScPoly1
9190simprd 464 . . . . . . 7 IDomn eval1.gmulGrpPoly1var1Poly1algScPoly1
9291eqeq1d 2424 . . . . . 6 IDomn eval1.gmulGrpPoly1var1Poly1algScPoly1
93 ringgrp 17784 . . . . . . . . 9
9412, 93syl 17 . . . . . . . 8 IDomn
9594adantr 466 . . . . . . 7 IDomn
96 eqid 2422 . . . . . . . . . . 11 mulGrp mulGrp
9796ringmgp 17785 . . . . . . . . . 10 mulGrp
9812, 97syl 17 . . . . . . . . 9 IDomn mulGrp
9998adantr 466 . . . . . . . 8 IDomn mulGrp
10096, 29mgpbas 17728 . . . . . . . . 9 mulGrp
101100, 83mulgnncl 16772 . . . . . . . 8 mulGrp
10299, 84, 81, 101syl3anc 1264 . . . . . . 7 IDomn
10329, 5, 89grpsubeq0 16739 . . . . . . 7
10495, 102, 87, 103syl3anc 1264 . . . . . 6 IDomn
10592, 104bitrd 256 . . . . 5 IDomn eval1.gmulGrpPoly1var1Poly1algScPoly1
106105rabbidva 3070 . . . 4 IDomn eval1.gmulGrpPoly1var1Poly1algScPoly1
10779, 106eqtrd 2463 . . 3 IDomn eval1.gmulGrpPoly1var1Poly1algScPoly1
108107fveq2d 5885 . 2 IDomn eval1.gmulGrpPoly1var1Poly1algScPoly1
10964, 108, 593brtr3d 4453 1 IDomn
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 187   wa 370   w3a 982   wceq 1437   wcel 1872   wne 2614  crab 2775  cvv 3080  csn 3998   class class class wbr 4423  ccnv 4852  cima 4856   wfn 5596  wf 5597  cfv 5601  (class class class)co 6305  cc0 9546  cxr 9681   clt 9682   cle 9683  cn 10616  cn0 10876  chash 12521  cbs 15120  c0g 15337   s cpws 15344  cmnd 16534  cgrp 16668  csg 16670  .gcmg 16671  mulGrpcmgp 17722  crg 17779  ccrg 17780   RingHom crh 17939  NzRingcnzr 18480  Domncdomn 18503  IDomncidom 18504  algSccascl 18534  var1cv1 18768  Poly1cpl1 18769  eval1ce1 18902   deg1 cdg1 23001 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-inf2 8155  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623  ax-pre-sup 9624  ax-addf 9625  ax-mulf 9626 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-ofr 6546  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-tpos 6984  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-2o 7194  df-oadd 7197  df-er 7374  df-map 7485  df-pm 7486  df-ixp 7534  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-fsupp 7893  df-sup 7965  df-oi 8034  df-card 8381  df-cda 8605  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-7 10680  df-8 10681  df-9 10682  df-10 10683  df-n0 10877  df-z 10945  df-dec 11059  df-uz 11167  df-fz 11792  df-fzo 11923  df-seq 12220  df-hash 12522  df-struct 15122  df-ndx 15123  df-slot 15124  df-base 15125  df-sets 15126  df-ress 15127  df-plusg 15202  df-mulr 15203  df-starv 15204  df-sca 15205  df-vsca 15206  df-ip 15207  df-tset 15208  df-ple 15209  df-ds 15211  df-unif 15212  df-hom 15213  df-cco 15214  df-0g 15339  df-gsum 15340  df-prds 15345  df-pws 15347  df-mre 15491  df-mrc 15492  df-acs 15494  df-mgm 16487  df-sgrp 16526  df-mnd 16536  df-mhm 16581  df-submnd 16582  df-grp 16672  df-minusg 16673  df-sbg 16674  df-mulg 16675  df-subg 16813  df-ghm 16880  df-cntz 16970  df-cmn 17431  df-abl 17432  df-mgp 17723  df-ur 17735  df-srg 17739  df-ring 17781  df-cring 17782  df-oppr 17850  df-dvdsr 17868  df-unit 17869  df-invr 17899  df-rnghom 17942  df-subrg 18005  df-lmod 18092  df-lss 18155  df-lsp 18194  df-nzr 18481  df-rlreg 18506  df-domn 18507  df-idom 18508  df-assa 18535  df-asp 18536  df-ascl 18537  df-psr 18579  df-mvr 18580  df-mpl 18581  df-opsr 18583  df-evls 18728  df-evl 18729  df-psr1 18772  df-vr1 18773  df-ply1 18774  df-coe1 18775  df-evl1 18904  df-cnfld 18970  df-mdeg 23002  df-deg1 23003  df-mon1 23078  df-uc1p 23079  df-q1p 23080  df-r1p 23081 This theorem is referenced by:  idomodle  36040
 Copyright terms: Public domain W3C validator