Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idomrootle Structured version   Unicode version

Theorem idomrootle 35767
Description: No element of an integral domain can have more than  N  N-th roots. (Contributed by Stefan O'Rear, 11-Sep-2015.)
Hypotheses
Ref Expression
idomrootle.b  |-  B  =  ( Base `  R
)
idomrootle.e  |-  .^  =  (.g
`  (mulGrp `  R )
)
Assertion
Ref Expression
idomrootle  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( # `
 { y  e.  B  |  ( N 
.^  y )  =  X } )  <_  N )
Distinct variable groups:    y, B    y, N    y, R    y, X
Allowed substitution hint:    .^ ( y)

Proof of Theorem idomrootle
StepHypRef Expression
1 eqid 2429 . . 3  |-  (Poly1 `  R
)  =  (Poly1 `  R
)
2 eqid 2429 . . 3  |-  ( Base `  (Poly1 `  R ) )  =  ( Base `  (Poly1 `  R ) )
3 eqid 2429 . . 3  |-  ( deg1  `  R
)  =  ( deg1  `  R
)
4 eqid 2429 . . 3  |-  (eval1 `  R
)  =  (eval1 `  R
)
5 eqid 2429 . . 3  |-  ( 0g
`  R )  =  ( 0g `  R
)
6 eqid 2429 . . 3  |-  ( 0g
`  (Poly1 `  R ) )  =  ( 0g `  (Poly1 `  R ) )
7 simp1 1005 . . 3  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  R  e. IDomn )
8 isidom 18463 . . . . . . . . 9  |-  ( R  e. IDomn 
<->  ( R  e.  CRing  /\  R  e. Domn ) )
98simplbi 461 . . . . . . . 8  |-  ( R  e. IDomn  ->  R  e.  CRing )
107, 9syl 17 . . . . . . 7  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  R  e.  CRing )
11 crngring 17726 . . . . . . 7  |-  ( R  e.  CRing  ->  R  e.  Ring )
1210, 11syl 17 . . . . . 6  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  R  e.  Ring )
131ply1ring 18776 . . . . . 6  |-  ( R  e.  Ring  ->  (Poly1 `  R
)  e.  Ring )
1412, 13syl 17 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (Poly1 `  R )  e.  Ring )
15 ringgrp 17720 . . . . 5  |-  ( (Poly1 `  R )  e.  Ring  -> 
(Poly1 `
 R )  e. 
Grp )
1614, 15syl 17 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (Poly1 `  R )  e.  Grp )
17 eqid 2429 . . . . . . 7  |-  (mulGrp `  (Poly1 `  R ) )  =  (mulGrp `  (Poly1 `  R
) )
1817ringmgp 17721 . . . . . 6  |-  ( (Poly1 `  R )  e.  Ring  -> 
(mulGrp `  (Poly1 `  R
) )  e.  Mnd )
1914, 18syl 17 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (mulGrp `  (Poly1 `  R ) )  e.  Mnd )
20 simp3 1007 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  N  e.  NN )
21 eqid 2429 . . . . . . 7  |-  (var1 `  R
)  =  (var1 `  R
)
2221, 1, 2vr1cl 18745 . . . . . 6  |-  ( R  e.  Ring  ->  (var1 `  R
)  e.  ( Base `  (Poly1 `  R ) ) )
2312, 22syl 17 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (var1 `  R )  e.  (
Base `  (Poly1 `  R
) ) )
2417, 2mgpbas 17664 . . . . . 6  |-  ( Base `  (Poly1 `  R ) )  =  ( Base `  (mulGrp `  (Poly1 `  R ) ) )
25 eqid 2429 . . . . . 6  |-  (.g `  (mulGrp `  (Poly1 `  R ) ) )  =  (.g `  (mulGrp `  (Poly1 `  R ) ) )
2624, 25mulgnncl 16724 . . . . 5  |-  ( ( (mulGrp `  (Poly1 `  R
) )  e.  Mnd  /\  N  e.  NN  /\  (var1 `  R )  e.  (
Base `  (Poly1 `  R
) ) )  -> 
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) )  e.  ( Base `  (Poly1 `  R ) ) )
2719, 20, 23, 26syl3anc 1264 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) )  e.  ( Base `  (Poly1 `  R ) ) )
28 eqid 2429 . . . . . . 7  |-  (algSc `  (Poly1 `  R ) )  =  (algSc `  (Poly1 `  R
) )
29 idomrootle.b . . . . . . 7  |-  B  =  ( Base `  R
)
301, 28, 29, 2ply1sclf 18813 . . . . . 6  |-  ( R  e.  Ring  ->  (algSc `  (Poly1 `  R ) ) : B --> ( Base `  (Poly1 `  R ) ) )
3112, 30syl 17 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (algSc `  (Poly1 `  R ) ) : B --> ( Base `  (Poly1 `  R ) ) )
32 simp2 1006 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  X  e.  B )
3331, 32ffvelrnd 6038 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
(algSc `  (Poly1 `  R
) ) `  X
)  e.  ( Base `  (Poly1 `  R ) ) )
34 eqid 2429 . . . . 5  |-  ( -g `  (Poly1 `  R ) )  =  ( -g `  (Poly1 `  R ) )
352, 34grpsubcl 16685 . . . 4  |-  ( ( (Poly1 `  R )  e. 
Grp  /\  ( N
(.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) )  e.  ( Base `  (Poly1 `  R ) )  /\  ( (algSc `  (Poly1 `  R
) ) `  X
)  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) )  e.  (
Base `  (Poly1 `  R
) ) )
3616, 27, 33, 35syl3anc 1264 . . 3  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) )  e.  (
Base `  (Poly1 `  R
) ) )
373, 1, 2deg1xrcl 22908 . . . . . . . . . 10  |-  ( ( (algSc `  (Poly1 `  R
) ) `  X
)  e.  ( Base `  (Poly1 `  R ) )  ->  ( ( deg1  `  R
) `  ( (algSc `  (Poly1 `  R ) ) `
 X ) )  e.  RR* )
3833, 37syl 17 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( (algSc `  (Poly1 `  R
) ) `  X
) )  e.  RR* )
39 0xr 9686 . . . . . . . . . 10  |-  0  e.  RR*
4039a1i 11 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  0  e.  RR* )
41 nnre 10616 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  RR )
4241rexrd 9689 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  RR* )
43423ad2ant3 1028 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  N  e.  RR* )
443, 1, 29, 28deg1sclle 22938 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( deg1  `
 R ) `  ( (algSc `  (Poly1 `  R
) ) `  X
) )  <_  0
)
4512, 32, 44syl2anc 665 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( (algSc `  (Poly1 `  R
) ) `  X
) )  <_  0
)
46 nngt0 10638 . . . . . . . . . 10  |-  ( N  e.  NN  ->  0  <  N )
47463ad2ant3 1028 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  0  <  N )
4838, 40, 43, 45, 47xrlelttrd 11457 . . . . . . . 8  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( (algSc `  (Poly1 `  R
) ) `  X
) )  <  N
)
498simprbi 465 . . . . . . . . . . 11  |-  ( R  e. IDomn  ->  R  e. Domn )
50 domnnzr 18454 . . . . . . . . . . 11  |-  ( R  e. Domn  ->  R  e. NzRing )
5149, 50syl 17 . . . . . . . . . 10  |-  ( R  e. IDomn  ->  R  e. NzRing )
527, 51syl 17 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  R  e. NzRing )
53 nnnn0 10876 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  NN0 )
54533ad2ant3 1028 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  N  e.  NN0 )
553, 1, 21, 17, 25deg1pw 22946 . . . . . . . . 9  |-  ( ( R  e. NzRing  /\  N  e. 
NN0 )  ->  (
( deg1  `
 R ) `  ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) )  =  N )
5652, 54, 55syl2anc 665 . . . . . . . 8  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) )  =  N )
5748, 56breqtrrd 4452 . . . . . . 7  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( (algSc `  (Poly1 `  R
) ) `  X
) )  <  (
( deg1  `
 R ) `  ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ) )
581, 3, 12, 2, 34, 27, 33, 57deg1sub 22934 . . . . . 6  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  =  ( ( deg1  `  R ) `  ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ) )
5958, 56eqtrd 2470 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  =  N )
6059, 54eqeltrd 2517 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  e.  NN0 )
613, 1, 6, 2deg1nn0clb 22916 . . . . 5  |-  ( ( R  e.  Ring  /\  (
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) )  e.  (
Base `  (Poly1 `  R
) ) )  -> 
( ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) )  =/=  ( 0g `  (Poly1 `  R ) )  <-> 
( ( deg1  `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  e.  NN0 )
)
6212, 36, 61syl2anc 665 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) )  =/=  ( 0g `  (Poly1 `  R ) )  <->  ( ( deg1  `  R ) `  (
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) )  e. 
NN0 ) )
6360, 62mpbird 235 . . 3  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) )  =/=  ( 0g `  (Poly1 `  R ) ) )
641, 2, 3, 4, 5, 6, 7, 36, 63fta1g 22993 . 2  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( # `
 ( `' ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) " { ( 0g `  R ) } ) )  <_ 
( ( deg1  `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) )
65 eqid 2429 . . . . . . 7  |-  ( R  ^s  B )  =  ( R  ^s  B )
66 eqid 2429 . . . . . . 7  |-  ( Base `  ( R  ^s  B ) )  =  ( Base `  ( R  ^s  B ) )
67 fvex 5891 . . . . . . . . 9  |-  ( Base `  R )  e.  _V
6829, 67eqeltri 2513 . . . . . . . 8  |-  B  e. 
_V
6968a1i 11 . . . . . . 7  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  B  e.  _V )
704, 1, 65, 29evl1rhm 18855 . . . . . . . . . 10  |-  ( R  e.  CRing  ->  (eval1 `  R
)  e.  ( (Poly1 `  R ) RingHom  ( R  ^s  B ) ) )
7110, 70syl 17 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (eval1 `  R )  e.  ( (Poly1 `  R ) RingHom  ( R  ^s  B ) ) )
722, 66rhmf 17889 . . . . . . . . 9  |-  ( (eval1 `  R )  e.  ( (Poly1 `  R ) RingHom  ( R  ^s  B ) )  -> 
(eval1 `
 R ) : ( Base `  (Poly1 `  R ) ) --> (
Base `  ( R  ^s  B ) ) )
7371, 72syl 17 . . . . . . . 8  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (eval1 `  R ) : (
Base `  (Poly1 `  R
) ) --> ( Base `  ( R  ^s  B ) ) )
7473, 36ffvelrnd 6038 . . . . . . 7  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
(eval1 `
 R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  e.  ( Base `  ( R  ^s  B ) ) )
7565, 29, 66, 7, 69, 74pwselbas 15346 . . . . . 6  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
(eval1 `
 R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) : B --> B )
76 ffn 5746 . . . . . 6  |-  ( ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) : B --> B  -> 
( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  Fn  B )
7775, 76syl 17 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
(eval1 `
 R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  Fn  B )
78 fniniseg2 6020 . . . . 5  |-  ( ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  Fn  B  -> 
( `' ( (eval1 `  R ) `  (
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) ) " { ( 0g `  R ) } )  =  { y  e.  B  |  ( ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) `  y )  =  ( 0g `  R ) } )
7977, 78syl 17 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( `' ( (eval1 `  R
) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) ) " { ( 0g `  R ) } )  =  { y  e.  B  |  ( ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) `  y )  =  ( 0g `  R ) } )
8010adantr 466 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  R  e.  CRing )
81 simpr 462 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  y  e.  B )
824, 21, 29, 1, 2, 80, 81evl1vard 18860 . . . . . . . . . 10  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
(var1 `  R )  e.  ( Base `  (Poly1 `  R ) )  /\  ( ( (eval1 `  R
) `  (var1 `  R
) ) `  y
)  =  y ) )
83 idomrootle.e . . . . . . . . . 10  |-  .^  =  (.g
`  (mulGrp `  R )
)
84 simpl3 1010 . . . . . . . . . . 11  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  N  e.  NN )
8584, 53syl 17 . . . . . . . . . 10  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  N  e.  NN0 )
864, 1, 29, 2, 80, 81, 82, 25, 83, 85evl1expd 18868 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) )  e.  ( Base `  (Poly1 `  R ) )  /\  ( ( (eval1 `  R
) `  ( N
(.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ) `  y )  =  ( N  .^  y ) ) )
87 simpl2 1009 . . . . . . . . . 10  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  X  e.  B )
884, 1, 29, 28, 2, 80, 87, 81evl1scad 18858 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( (algSc `  (Poly1 `  R ) ) `  X )  e.  (
Base `  (Poly1 `  R
) )  /\  (
( (eval1 `  R ) `  ( (algSc `  (Poly1 `  R
) ) `  X
) ) `  y
)  =  X ) )
89 eqid 2429 . . . . . . . . 9  |-  ( -g `  R )  =  (
-g `  R )
904, 1, 29, 2, 80, 81, 86, 88, 34, 89evl1subd 18865 . . . . . . . 8  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) )  e.  ( Base `  (Poly1 `  R ) )  /\  ( ( (eval1 `  R
) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) ) `  y )  =  ( ( N  .^  y
) ( -g `  R
) X ) ) )
9190simprd 464 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) `  y )  =  ( ( N 
.^  y ) (
-g `  R ) X ) )
9291eqeq1d 2431 . . . . . 6  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( ( (eval1 `  R
) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) ) `  y )  =  ( 0g `  R )  <-> 
( ( N  .^  y ) ( -g `  R ) X )  =  ( 0g `  R ) ) )
93 ringgrp 17720 . . . . . . . . 9  |-  ( R  e.  Ring  ->  R  e. 
Grp )
9412, 93syl 17 . . . . . . . 8  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  R  e.  Grp )
9594adantr 466 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  R  e.  Grp )
96 eqid 2429 . . . . . . . . . . 11  |-  (mulGrp `  R )  =  (mulGrp `  R )
9796ringmgp 17721 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
9812, 97syl 17 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (mulGrp `  R )  e.  Mnd )
9998adantr 466 . . . . . . . 8  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (mulGrp `  R )  e.  Mnd )
10096, 29mgpbas 17664 . . . . . . . . 9  |-  B  =  ( Base `  (mulGrp `  R ) )
101100, 83mulgnncl 16724 . . . . . . . 8  |-  ( ( (mulGrp `  R )  e.  Mnd  /\  N  e.  NN  /\  y  e.  B )  ->  ( N  .^  y )  e.  B )
10299, 84, 81, 101syl3anc 1264 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  ( N  .^  y )  e.  B )
10329, 5, 89grpsubeq0 16691 . . . . . . 7  |-  ( ( R  e.  Grp  /\  ( N  .^  y )  e.  B  /\  X  e.  B )  ->  (
( ( N  .^  y ) ( -g `  R ) X )  =  ( 0g `  R )  <->  ( N  .^  y )  =  X ) )
10495, 102, 87, 103syl3anc 1264 . . . . . 6  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( ( N  .^  y ) ( -g `  R ) X )  =  ( 0g `  R )  <->  ( N  .^  y )  =  X ) )
10592, 104bitrd 256 . . . . 5  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( ( (eval1 `  R
) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) ) `  y )  =  ( 0g `  R )  <-> 
( N  .^  y
)  =  X ) )
106105rabbidva 3078 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  { y  e.  B  |  ( ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) `  y )  =  ( 0g `  R ) }  =  { y  e.  B  |  ( N  .^  y )  =  X } )
10779, 106eqtrd 2470 . . 3  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( `' ( (eval1 `  R
) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) ) " { ( 0g `  R ) } )  =  { y  e.  B  |  ( N 
.^  y )  =  X } )
108107fveq2d 5885 . 2  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( # `
 ( `' ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) " { ( 0g `  R ) } ) )  =  ( # `  {
y  e.  B  | 
( N  .^  y
)  =  X }
) )
10964, 108, 593brtr3d 4455 1  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( # `
 { y  e.  B  |  ( N 
.^  y )  =  X } )  <_  N )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625   {crab 2786   _Vcvv 3087   {csn 4002   class class class wbr 4426   `'ccnv 4853   "cima 4857    Fn wfn 5596   -->wf 5597   ` cfv 5601  (class class class)co 6305   0cc0 9538   RR*cxr 9673    < clt 9674    <_ cle 9675   NNcn 10609   NN0cn0 10869   #chash 12512   Basecbs 15084   0gc0g 15297    ^s cpws 15304   Mndcmnd 16486   Grpcgrp 16620   -gcsg 16622  .gcmg 16623  mulGrpcmgp 17658   Ringcrg 17715   CRingccrg 17716   RingHom crh 17875  NzRingcnzr 18416  Domncdomn 18439  IDomncidom 18440  algSccascl 18470  var1cv1 18704  Poly1cpl1 18705  eval1ce1 18838   deg1 cdg1 22880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-ofr 6546  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-tpos 6981  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-map 7482  df-pm 7483  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-sup 7962  df-oi 8025  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-fz 11783  df-fzo 11914  df-seq 12211  df-hash 12513  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-starv 15167  df-sca 15168  df-vsca 15169  df-ip 15170  df-tset 15171  df-ple 15172  df-ds 15174  df-unif 15175  df-hom 15176  df-cco 15177  df-0g 15299  df-gsum 15300  df-prds 15305  df-pws 15307  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-mhm 16533  df-submnd 16534  df-grp 16624  df-minusg 16625  df-sbg 16626  df-mulg 16627  df-subg 16765  df-ghm 16832  df-cntz 16922  df-cmn 17367  df-abl 17368  df-mgp 17659  df-ur 17671  df-srg 17675  df-ring 17717  df-cring 17718  df-oppr 17786  df-dvdsr 17804  df-unit 17805  df-invr 17835  df-rnghom 17878  df-subrg 17941  df-lmod 18028  df-lss 18091  df-lsp 18130  df-nzr 18417  df-rlreg 18442  df-domn 18443  df-idom 18444  df-assa 18471  df-asp 18472  df-ascl 18473  df-psr 18515  df-mvr 18516  df-mpl 18517  df-opsr 18519  df-evls 18664  df-evl 18665  df-psr1 18708  df-vr1 18709  df-ply1 18710  df-coe1 18711  df-evl1 18840  df-cnfld 18906  df-mdeg 22881  df-deg1 22882  df-mon1 22956  df-uc1p 22957  df-q1p 22958  df-r1p 22959
This theorem is referenced by:  idomodle  35768
  Copyright terms: Public domain W3C validator