Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idllmulcl Structured version   Unicode version

Theorem idllmulcl 28960
Description: An ideal is closed under multiplication on the left. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idllmulcl.1  |-  G  =  ( 1st `  R
)
idllmulcl.2  |-  H  =  ( 2nd `  R
)
idllmulcl.3  |-  X  =  ran  G
Assertion
Ref Expression
idllmulcl  |-  ( ( ( R  e.  RingOps  /\  I  e.  ( Idl `  R ) )  /\  ( A  e.  I  /\  B  e.  X
) )  ->  ( B H A )  e.  I )

Proof of Theorem idllmulcl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idllmulcl.1 . . . . . 6  |-  G  =  ( 1st `  R
)
2 idllmulcl.2 . . . . . 6  |-  H  =  ( 2nd `  R
)
3 idllmulcl.3 . . . . . 6  |-  X  =  ran  G
4 eqid 2451 . . . . . 6  |-  (GId `  G )  =  (GId
`  G )
51, 2, 3, 4isidl 28954 . . . . 5  |-  ( R  e.  RingOps  ->  ( I  e.  ( Idl `  R
)  <->  ( I  C_  X  /\  (GId `  G
)  e.  I  /\  A. x  e.  I  ( A. y  e.  I 
( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) ) ) ) )
65biimpa 484 . . . 4  |-  ( ( R  e.  RingOps  /\  I  e.  ( Idl `  R
) )  ->  (
I  C_  X  /\  (GId `  G )  e.  I  /\  A. x  e.  I  ( A. y  e.  I  (
x G y )  e.  I  /\  A. z  e.  X  (
( z H x )  e.  I  /\  ( x H z )  e.  I ) ) ) )
76simp3d 1002 . . 3  |-  ( ( R  e.  RingOps  /\  I  e.  ( Idl `  R
) )  ->  A. x  e.  I  ( A. y  e.  I  (
x G y )  e.  I  /\  A. z  e.  X  (
( z H x )  e.  I  /\  ( x H z )  e.  I ) ) )
8 simpl 457 . . . . . 6  |-  ( ( ( z H x )  e.  I  /\  ( x H z )  e.  I )  ->  ( z H x )  e.  I
)
98ralimi 2811 . . . . 5  |-  ( A. z  e.  X  (
( z H x )  e.  I  /\  ( x H z )  e.  I )  ->  A. z  e.  X  ( z H x )  e.  I )
109adantl 466 . . . 4  |-  ( ( A. y  e.  I 
( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) )  ->  A. z  e.  X  ( z H x )  e.  I )
1110ralimi 2811 . . 3  |-  ( A. x  e.  I  ( A. y  e.  I 
( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) )  ->  A. x  e.  I  A. z  e.  X  ( z H x )  e.  I )
127, 11syl 16 . 2  |-  ( ( R  e.  RingOps  /\  I  e.  ( Idl `  R
) )  ->  A. x  e.  I  A. z  e.  X  ( z H x )  e.  I )
13 oveq2 6200 . . . 4  |-  ( x  =  A  ->  (
z H x )  =  ( z H A ) )
1413eleq1d 2520 . . 3  |-  ( x  =  A  ->  (
( z H x )  e.  I  <->  ( z H A )  e.  I
) )
15 oveq1 6199 . . . 4  |-  ( z  =  B  ->  (
z H A )  =  ( B H A ) )
1615eleq1d 2520 . . 3  |-  ( z  =  B  ->  (
( z H A )  e.  I  <->  ( B H A )  e.  I
) )
1714, 16rspc2v 3178 . 2  |-  ( ( A  e.  I  /\  B  e.  X )  ->  ( A. x  e.  I  A. z  e.  X  ( z H x )  e.  I  ->  ( B H A )  e.  I ) )
1812, 17mpan9 469 1  |-  ( ( ( R  e.  RingOps  /\  I  e.  ( Idl `  R ) )  /\  ( A  e.  I  /\  B  e.  X
) )  ->  ( B H A )  e.  I )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2795    C_ wss 3428   ran crn 4941   ` cfv 5518  (class class class)co 6192   1stc1st 6677   2ndc2nd 6678  GIdcgi 23811   RingOpscrngo 23999   Idlcidl 28947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3072  df-sbc 3287  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4736  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-iota 5481  df-fun 5520  df-fv 5526  df-ov 6195  df-idl 28950
This theorem is referenced by:  idlnegcl  28962  divrngidl  28968  intidl  28969  unichnidl  28971  prnc  29007  ispridlc  29010
  Copyright terms: Public domain W3C validator