Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idinside Structured version   Unicode version

Theorem idinside 28066
Description: Law for finding a point inside a segment. Theorem 4.19 of [Schwabhauser] p. 38. (Contributed by Scott Fenton, 7-Oct-2013.)
Assertion
Ref Expression
idinside  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( C 
Btwn  <. A ,  B >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) )

Proof of Theorem idinside
StepHypRef Expression
1 simp1 988 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  N  e.  NN )
2 simp3l 1016 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N ) )
3 simp3r 1017 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N ) )
4 cgrid2 27985 . . . . . 6  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. C ,  C >.Cgr
<. C ,  D >.  ->  C  =  D )
)
51, 2, 2, 3, 4syl13anc 1220 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( <. C ,  C >.Cgr <. C ,  D >.  ->  C  =  D ) )
6 simp2l 1014 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N ) )
7 axbtwnid 23136 . . . . . 6  |-  ( ( N  e.  NN  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  ( C  Btwn  <. A ,  A >.  ->  C  =  A ) )
81, 2, 6, 7syl3anc 1218 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( C  Btwn  <. A ,  A >.  ->  C  =  A )
)
9 opeq1 4054 . . . . . . . . 9  |-  ( C  =  A  ->  <. C ,  C >.  =  <. A ,  C >. )
10 opeq1 4054 . . . . . . . . 9  |-  ( C  =  A  ->  <. C ,  D >.  =  <. A ,  D >. )
119, 10breq12d 4300 . . . . . . . 8  |-  ( C  =  A  ->  ( <. C ,  C >.Cgr <. C ,  D >.  <->  <. A ,  C >.Cgr <. A ,  D >. ) )
1211imbi1d 317 . . . . . . 7  |-  ( C  =  A  ->  (
( <. C ,  C >.Cgr
<. C ,  D >.  ->  C  =  D )  <->  (
<. A ,  C >.Cgr <. A ,  D >.  ->  C  =  D )
) )
1312biimpcd 224 . . . . . 6  |-  ( (
<. C ,  C >.Cgr <. C ,  D >.  ->  C  =  D )  ->  ( C  =  A  ->  ( <. A ,  C >.Cgr <. A ,  D >.  ->  C  =  D ) ) )
14 ax-1 6 . . . . . 6  |-  ( C  =  D  ->  ( <. B ,  C >.Cgr <. B ,  D >.  ->  C  =  D )
)
1513, 14syl8 70 . . . . 5  |-  ( (
<. C ,  C >.Cgr <. C ,  D >.  ->  C  =  D )  ->  ( C  =  A  ->  ( <. A ,  C >.Cgr <. A ,  D >.  ->  ( <. B ,  C >.Cgr <. B ,  D >.  ->  C  =  D ) ) ) )
165, 8, 15sylsyld 56 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( C  Btwn  <. A ,  A >.  -> 
( <. A ,  C >.Cgr
<. A ,  D >.  -> 
( <. B ,  C >.Cgr
<. B ,  D >.  ->  C  =  D )
) ) )
17163impd 1201 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( C 
Btwn  <. A ,  A >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) )
18 opeq2 4055 . . . . . 6  |-  ( A  =  B  ->  <. A ,  A >.  =  <. A ,  B >. )
1918breq2d 4299 . . . . 5  |-  ( A  =  B  ->  ( C  Btwn  <. A ,  A >.  <-> 
C  Btwn  <. A ,  B >. ) )
20193anbi1d 1293 . . . 4  |-  ( A  =  B  ->  (
( C  Btwn  <. A ,  A >.  /\  <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. )  <-> 
( C  Btwn  <. A ,  B >.  /\  <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. ) ) )
2120imbi1d 317 . . 3  |-  ( A  =  B  ->  (
( ( C  Btwn  <. A ,  A >.  /\ 
<. A ,  C >.Cgr <. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D )  <->  ( ( C 
Btwn  <. A ,  B >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) ) )
2217, 21syl5ib 219 . 2  |-  ( A  =  B  ->  (
( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( ( C  Btwn  <. A ,  B >.  /\ 
<. A ,  C >.Cgr <. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) ) )
23 simpr1 994 . . . . . 6  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  N  e.  NN )
24 simpr2l 1047 . . . . . 6  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  A  e.  ( EE `  N ) )
25 simpr2r 1048 . . . . . 6  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  B  e.  ( EE `  N ) )
26 simpr3l 1049 . . . . . 6  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  C  e.  ( EE `  N ) )
27 btwncolinear1 28051 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( C  Btwn  <. A ,  B >.  ->  A  Colinear  <. B ,  C >. ) )
2823, 24, 25, 26, 27syl13anc 1220 . . . . 5  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( C  Btwn  <. A ,  B >.  ->  A  Colinear  <. B ,  C >. ) )
29 idd 24 . . . . 5  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( <. A ,  C >.Cgr <. A ,  D >.  ->  <. A ,  C >.Cgr
<. A ,  D >. ) )
30 idd 24 . . . . 5  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( <. B ,  C >.Cgr <. B ,  D >.  ->  <. B ,  C >.Cgr
<. B ,  D >. ) )
3128, 29, 303anim123d 1296 . . . 4  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( ( C 
Btwn  <. A ,  B >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr <. B ,  D >. ) ) )
32 simp1 988 . . . . . . . . 9  |-  ( ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  A  Colinear  <. B ,  C >. )
3332anim2i 569 . . . . . . . 8  |-  ( ( A  =/=  B  /\  ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. ) )  ->  ( A  =/=  B  /\  A  Colinear  <. B ,  C >. )
)
34 3simpc 987 . . . . . . . . 9  |-  ( ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  ( <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. ) )
3534adantl 466 . . . . . . . 8  |-  ( ( A  =/=  B  /\  ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. ) )  ->  ( <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr <. B ,  D >. ) )
3633, 35jca 532 . . . . . . 7  |-  ( ( A  =/=  B  /\  ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. ) )  ->  ( ( A  =/=  B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. ) ) )
37 lineid 28065 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( ( A  =/=  B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  C >.Cgr <. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. ) )  ->  C  =  D ) )
3836, 37syl5 32 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( A  =/=  B  /\  ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. ) )  ->  C  =  D ) )
3938expd 436 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( A  =/= 
B  ->  ( ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) ) )
4039impcom 430 . . . 4  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( ( A 
Colinear 
<. B ,  C >.  /\ 
<. A ,  C >.Cgr <. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) )
4131, 40syld 44 . . 3  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( ( C 
Btwn  <. A ,  B >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) )
4241ex 434 . 2  |-  ( A  =/=  B  ->  (
( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( ( C  Btwn  <. A ,  B >.  /\ 
<. A ,  C >.Cgr <. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) ) )
4322, 42pm2.61ine 2682 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( C 
Btwn  <. A ,  B >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   <.cop 3878   class class class wbr 4287   ` cfv 5413   NNcn 10314   EEcee 23085    Btwn cbtwn 23086  Cgrccgr 23087    Colinear ccolin 28019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-map 7208  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-sum 13156  df-ee 23088  df-btwn 23089  df-cgr 23090  df-ofs 27965  df-colinear 28021  df-ifs 28022  df-cgr3 28023  df-fs 28024
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator