Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idinside Structured version   Unicode version

Theorem idinside 30435
Description: Law for finding a point inside a segment. Theorem 4.19 of [Schwabhauser] p. 38. (Contributed by Scott Fenton, 7-Oct-2013.)
Assertion
Ref Expression
idinside  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( C 
Btwn  <. A ,  B >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) )

Proof of Theorem idinside
StepHypRef Expression
1 simp1 999 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  N  e.  NN )
2 simp3l 1027 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N ) )
3 simp3r 1028 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N ) )
4 cgrid2 30354 . . . . . 6  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. C ,  C >.Cgr
<. C ,  D >.  ->  C  =  D )
)
51, 2, 2, 3, 4syl13anc 1234 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( <. C ,  C >.Cgr <. C ,  D >.  ->  C  =  D ) )
6 simp2l 1025 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N ) )
7 axbtwnid 24671 . . . . . 6  |-  ( ( N  e.  NN  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  ( C  Btwn  <. A ,  A >.  ->  C  =  A ) )
81, 2, 6, 7syl3anc 1232 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( C  Btwn  <. A ,  A >.  ->  C  =  A )
)
9 opeq1 4161 . . . . . . . . 9  |-  ( C  =  A  ->  <. C ,  C >.  =  <. A ,  C >. )
10 opeq1 4161 . . . . . . . . 9  |-  ( C  =  A  ->  <. C ,  D >.  =  <. A ,  D >. )
119, 10breq12d 4410 . . . . . . . 8  |-  ( C  =  A  ->  ( <. C ,  C >.Cgr <. C ,  D >.  <->  <. A ,  C >.Cgr <. A ,  D >. ) )
1211imbi1d 317 . . . . . . 7  |-  ( C  =  A  ->  (
( <. C ,  C >.Cgr
<. C ,  D >.  ->  C  =  D )  <->  (
<. A ,  C >.Cgr <. A ,  D >.  ->  C  =  D )
) )
1312biimpcd 226 . . . . . 6  |-  ( (
<. C ,  C >.Cgr <. C ,  D >.  ->  C  =  D )  ->  ( C  =  A  ->  ( <. A ,  C >.Cgr <. A ,  D >.  ->  C  =  D ) ) )
14 ax-1 6 . . . . . 6  |-  ( C  =  D  ->  ( <. B ,  C >.Cgr <. B ,  D >.  ->  C  =  D )
)
1513, 14syl8 71 . . . . 5  |-  ( (
<. C ,  C >.Cgr <. C ,  D >.  ->  C  =  D )  ->  ( C  =  A  ->  ( <. A ,  C >.Cgr <. A ,  D >.  ->  ( <. B ,  C >.Cgr <. B ,  D >.  ->  C  =  D ) ) ) )
165, 8, 15sylsyld 57 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( C  Btwn  <. A ,  A >.  -> 
( <. A ,  C >.Cgr
<. A ,  D >.  -> 
( <. B ,  C >.Cgr
<. B ,  D >.  ->  C  =  D )
) ) )
17163impd 1213 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( C 
Btwn  <. A ,  A >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) )
18 opeq2 4162 . . . . . 6  |-  ( A  =  B  ->  <. A ,  A >.  =  <. A ,  B >. )
1918breq2d 4409 . . . . 5  |-  ( A  =  B  ->  ( C  Btwn  <. A ,  A >.  <-> 
C  Btwn  <. A ,  B >. ) )
20193anbi1d 1307 . . . 4  |-  ( A  =  B  ->  (
( C  Btwn  <. A ,  A >.  /\  <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. )  <-> 
( C  Btwn  <. A ,  B >.  /\  <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. ) ) )
2120imbi1d 317 . . 3  |-  ( A  =  B  ->  (
( ( C  Btwn  <. A ,  A >.  /\ 
<. A ,  C >.Cgr <. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D )  <->  ( ( C 
Btwn  <. A ,  B >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) ) )
2217, 21syl5ib 221 . 2  |-  ( A  =  B  ->  (
( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( ( C  Btwn  <. A ,  B >.  /\ 
<. A ,  C >.Cgr <. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) ) )
23 simpr1 1005 . . . . . 6  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  N  e.  NN )
24 simpr2l 1058 . . . . . 6  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  A  e.  ( EE `  N ) )
25 simpr2r 1059 . . . . . 6  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  B  e.  ( EE `  N ) )
26 simpr3l 1060 . . . . . 6  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  C  e.  ( EE `  N ) )
27 btwncolinear1 30420 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( C  Btwn  <. A ,  B >.  ->  A  Colinear  <. B ,  C >. ) )
2823, 24, 25, 26, 27syl13anc 1234 . . . . 5  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( C  Btwn  <. A ,  B >.  ->  A  Colinear  <. B ,  C >. ) )
29 idd 25 . . . . 5  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( <. A ,  C >.Cgr <. A ,  D >.  ->  <. A ,  C >.Cgr
<. A ,  D >. ) )
30 idd 25 . . . . 5  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( <. B ,  C >.Cgr <. B ,  D >.  ->  <. B ,  C >.Cgr
<. B ,  D >. ) )
3128, 29, 303anim123d 1310 . . . 4  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( ( C 
Btwn  <. A ,  B >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr <. B ,  D >. ) ) )
32 simp1 999 . . . . . . . . 9  |-  ( ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  A  Colinear  <. B ,  C >. )
3332anim2i 569 . . . . . . . 8  |-  ( ( A  =/=  B  /\  ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. ) )  ->  ( A  =/=  B  /\  A  Colinear  <. B ,  C >. )
)
34 3simpc 998 . . . . . . . . 9  |-  ( ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  ( <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. ) )
3534adantl 466 . . . . . . . 8  |-  ( ( A  =/=  B  /\  ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. ) )  ->  ( <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr <. B ,  D >. ) )
3633, 35jca 532 . . . . . . 7  |-  ( ( A  =/=  B  /\  ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. ) )  ->  ( ( A  =/=  B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. ) ) )
37 lineid 30434 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( ( A  =/=  B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  C >.Cgr <. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. ) )  ->  C  =  D ) )
3836, 37syl5 32 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( A  =/=  B  /\  ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. ) )  ->  C  =  D ) )
3938expd 436 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( A  =/= 
B  ->  ( ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) ) )
4039impcom 430 . . . 4  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( ( A 
Colinear 
<. B ,  C >.  /\ 
<. A ,  C >.Cgr <. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) )
4131, 40syld 44 . . 3  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( ( C 
Btwn  <. A ,  B >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) )
4241ex 434 . 2  |-  ( A  =/=  B  ->  (
( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( ( C  Btwn  <. A ,  B >.  /\ 
<. A ,  C >.Cgr <. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) ) )
4322, 42pm2.61ine 2718 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( C 
Btwn  <. A ,  B >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844    =/= wne 2600   <.cop 3980   class class class wbr 4397   ` cfv 5571   NNcn 10578   EEcee 24620    Btwn cbtwn 24621  Cgrccgr 24622    Colinear ccolin 30388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-inf2 8093  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601  ax-pre-sup 9602
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-fal 1413  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-int 4230  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-se 4785  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-isom 5580  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-oadd 7173  df-er 7350  df-map 7461  df-en 7557  df-dom 7558  df-sdom 7559  df-fin 7560  df-sup 7937  df-oi 7971  df-card 8354  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-div 10250  df-nn 10579  df-2 10637  df-3 10638  df-n0 10839  df-z 10908  df-uz 11130  df-rp 11268  df-ico 11590  df-icc 11591  df-fz 11729  df-fzo 11857  df-seq 12154  df-exp 12213  df-hash 12455  df-cj 13083  df-re 13084  df-im 13085  df-sqrt 13219  df-abs 13220  df-clim 13462  df-sum 13660  df-ee 24623  df-btwn 24624  df-cgr 24625  df-ofs 30334  df-colinear 30390  df-ifs 30391  df-cgr3 30392  df-fs 30393
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator