MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ididg Structured version   Unicode version

Theorem ididg 5104
Description: A set is identical to itself. (Contributed by NM, 28-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ididg  |-  ( A  e.  V  ->  A  _I  A )

Proof of Theorem ididg
StepHypRef Expression
1 eqid 2454 . 2  |-  A  =  A
2 ideqg 5102 . 2  |-  ( A  e.  V  ->  ( A  _I  A  <->  A  =  A ) )
31, 2mpbiri 233 1  |-  ( A  e.  V  ->  A  _I  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758   class class class wbr 4403    _I cid 4742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-br 4404  df-opab 4462  df-id 4747  df-xp 4957  df-rel 4958
This theorem is referenced by:  issetid  5105  opelresi  5233  fvi  5860  dfpo2  27729
  Copyright terms: Public domain W3C validator