MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfuval Structured version   Unicode version

Theorem idfuval 15119
Description: Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
idfuval.i  |-  I  =  (idfunc `  C )
idfuval.b  |-  B  =  ( Base `  C
)
idfuval.c  |-  ( ph  ->  C  e.  Cat )
idfuval.h  |-  H  =  ( Hom  `  C
)
Assertion
Ref Expression
idfuval  |-  ( ph  ->  I  =  <. (  _I  |`  B ) ,  ( z  e.  ( B  X.  B ) 
|->  (  _I  |`  ( H `  z )
) ) >. )
Distinct variable groups:    z, B    z, C    z, H    ph, z
Allowed substitution hint:    I( z)

Proof of Theorem idfuval
Dummy variables  b 
c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idfuval.i . 2  |-  I  =  (idfunc `  C )
2 idfuval.c . . 3  |-  ( ph  ->  C  e.  Cat )
3 fvex 5882 . . . . . 6  |-  ( Base `  c )  e.  _V
43a1i 11 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  e. 
_V )
5 fveq2 5872 . . . . . 6  |-  ( c  =  C  ->  ( Base `  c )  =  ( Base `  C
) )
6 idfuval.b . . . . . 6  |-  B  =  ( Base `  C
)
75, 6syl6eqr 2526 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  =  B )
8 simpr 461 . . . . . . 7  |-  ( ( c  =  C  /\  b  =  B )  ->  b  =  B )
98reseq2d 5279 . . . . . 6  |-  ( ( c  =  C  /\  b  =  B )  ->  (  _I  |`  b
)  =  (  _I  |`  B ) )
108sqxpeqd 5031 . . . . . . 7  |-  ( ( c  =  C  /\  b  =  B )  ->  ( b  X.  b
)  =  ( B  X.  B ) )
11 simpl 457 . . . . . . . . . . 11  |-  ( ( c  =  C  /\  b  =  B )  ->  c  =  C )
1211fveq2d 5876 . . . . . . . . . 10  |-  ( ( c  =  C  /\  b  =  B )  ->  ( Hom  `  c
)  =  ( Hom  `  C ) )
13 idfuval.h . . . . . . . . . 10  |-  H  =  ( Hom  `  C
)
1412, 13syl6eqr 2526 . . . . . . . . 9  |-  ( ( c  =  C  /\  b  =  B )  ->  ( Hom  `  c
)  =  H )
1514fveq1d 5874 . . . . . . . 8  |-  ( ( c  =  C  /\  b  =  B )  ->  ( ( Hom  `  c
) `  z )  =  ( H `  z ) )
1615reseq2d 5279 . . . . . . 7  |-  ( ( c  =  C  /\  b  =  B )  ->  (  _I  |`  (
( Hom  `  c ) `
 z ) )  =  (  _I  |`  ( H `  z )
) )
1710, 16mpteq12dv 4531 . . . . . 6  |-  ( ( c  =  C  /\  b  =  B )  ->  ( z  e.  ( b  X.  b ) 
|->  (  _I  |`  (
( Hom  `  c ) `
 z ) ) )  =  ( z  e.  ( B  X.  B )  |->  (  _I  |`  ( H `  z
) ) ) )
189, 17opeq12d 4227 . . . . 5  |-  ( ( c  =  C  /\  b  =  B )  -> 
<. (  _I  |`  b
) ,  ( z  e.  ( b  X.  b )  |->  (  _I  |`  ( ( Hom  `  c
) `  z )
) ) >.  =  <. (  _I  |`  B ) ,  ( z  e.  ( B  X.  B
)  |->  (  _I  |`  ( H `  z )
) ) >. )
194, 7, 18csbied2 3468 . . . 4  |-  ( c  =  C  ->  [_ ( Base `  c )  / 
b ]_ <. (  _I  |`  b
) ,  ( z  e.  ( b  X.  b )  |->  (  _I  |`  ( ( Hom  `  c
) `  z )
) ) >.  =  <. (  _I  |`  B ) ,  ( z  e.  ( B  X.  B
)  |->  (  _I  |`  ( H `  z )
) ) >. )
20 df-idfu 15102 . . . 4  |- idfunc  =  ( c  e. 
Cat  |->  [_ ( Base `  c
)  /  b ]_ <. (  _I  |`  b
) ,  ( z  e.  ( b  X.  b )  |->  (  _I  |`  ( ( Hom  `  c
) `  z )
) ) >. )
21 opex 4717 . . . 4  |-  <. (  _I  |`  B ) ,  ( z  e.  ( B  X.  B ) 
|->  (  _I  |`  ( H `  z )
) ) >.  e.  _V
2219, 20, 21fvmpt 5957 . . 3  |-  ( C  e.  Cat  ->  (idfunc `  C
)  =  <. (  _I  |`  B ) ,  ( z  e.  ( B  X.  B ) 
|->  (  _I  |`  ( H `  z )
) ) >. )
232, 22syl 16 . 2  |-  ( ph  ->  (idfunc `  C )  =  <. (  _I  |`  B ) ,  ( z  e.  ( B  X.  B
)  |->  (  _I  |`  ( H `  z )
) ) >. )
241, 23syl5eq 2520 1  |-  ( ph  ->  I  =  <. (  _I  |`  B ) ,  ( z  e.  ( B  X.  B ) 
|->  (  _I  |`  ( H `  z )
) ) >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3118   [_csb 3440   <.cop 4039    |-> cmpt 4511    _I cid 4796    X. cxp 5003    |` cres 5007   ` cfv 5594   Basecbs 14506   Hom chom 14582   Catccat 14935  idfunccidfu 15098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-res 5017  df-iota 5557  df-fun 5596  df-fv 5602  df-idfu 15102
This theorem is referenced by:  idfu2nd  15120  idfu1st  15122  idfucl  15124  catcisolem  15307  curf2ndf  15390
  Copyright terms: Public domain W3C validator