MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icossioo Structured version   Unicode version

Theorem icossioo 11500
Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 29-Mar-2017.)
Assertion
Ref Expression
icossioo  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <  C  /\  D  <_  B ) )  ->  ( C [,) D )  C_  ( A (,) B ) )

Proof of Theorem icossioo
Dummy variables  a 
b  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 11418 . 2  |-  (,)  =  ( a  e.  RR* ,  b  e.  RR*  |->  { x  e.  RR*  |  ( a  <  x  /\  x  <  b ) } )
2 df-ico 11420 . 2  |-  [,)  =  ( a  e.  RR* ,  b  e.  RR*  |->  { x  e.  RR*  |  ( a  <_  x  /\  x  <  b ) } )
3 xrltletr 11245 . 2  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  w  e. 
RR* )  ->  (
( A  <  C  /\  C  <_  w )  ->  A  <  w
) )
4 xrltletr 11245 . 2  |-  ( ( w  e.  RR*  /\  D  e.  RR*  /\  B  e. 
RR* )  ->  (
( w  <  D  /\  D  <_  B )  ->  w  <  B
) )
51, 2, 3, 4ixxss12 11434 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <  C  /\  D  <_  B ) )  ->  ( C [,) D )  C_  ( A (,) B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1758    C_ wss 3439   class class class wbr 4403  (class class class)co 6203   RR*cxr 9531    < clt 9532    <_ cle 9533   (,)cioo 11414   [,)cico 11416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9452  ax-resscn 9453  ax-pre-lttri 9470  ax-pre-lttrn 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-po 4752  df-so 4753  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-ioo 11418  df-ico 11420
This theorem is referenced by:  xrge0iifcnv  26528  esumfsupre  26685  esumpfinvallem  26688  esumpcvgval  26692  esumcvg  26700  dya2icoseg  26856  signsply0  27116
  Copyright terms: Public domain W3C validator