MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icoshft Structured version   Unicode version

Theorem icoshft 11631
Description: A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008.)
Assertion
Ref Expression
icoshft  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  +  C )  e.  ( ( A  +  C ) [,) ( B  +  C )
) ) )

Proof of Theorem icoshft
StepHypRef Expression
1 rexr 9628 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  RR* )
2 elico2 11577 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( X  e.  ( A [,) B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <  B ) ) )
31, 2sylan2 474 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,) B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <  B ) ) )
43biimpd 207 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  e.  RR  /\  A  <_  X  /\  X  <  B
) ) )
543adant3 1011 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  e.  RR  /\  A  <_  X  /\  X  < 
B ) ) )
6 3anass 972 . . 3  |-  ( ( X  e.  RR  /\  A  <_  X  /\  X  <  B )  <->  ( X  e.  RR  /\  ( A  <_  X  /\  X  <  B ) ) )
75, 6syl6ib 226 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  e.  RR  /\  ( A  <_  X  /\  X  <  B ) ) ) )
8 leadd1 10009 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  X  e.  RR  /\  C  e.  RR )  ->  ( A  <_  X  <->  ( A  +  C )  <_  ( X  +  C )
) )
983com12 1195 . . . . . . . . 9  |-  ( ( X  e.  RR  /\  A  e.  RR  /\  C  e.  RR )  ->  ( A  <_  X  <->  ( A  +  C )  <_  ( X  +  C )
) )
1093expib 1194 . . . . . . . 8  |-  ( X  e.  RR  ->  (
( A  e.  RR  /\  C  e.  RR )  ->  ( A  <_  X 
<->  ( A  +  C
)  <_  ( X  +  C ) ) ) )
1110com12 31 . . . . . . 7  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( X  e.  RR  ->  ( A  <_  X  <->  ( A  +  C )  <_  ( X  +  C ) ) ) )
12113adant2 1010 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  RR  ->  ( A  <_  X  <->  ( A  +  C )  <_  ( X  +  C )
) ) )
1312imp 429 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  X  e.  RR )  ->  ( A  <_  X 
<->  ( A  +  C
)  <_  ( X  +  C ) ) )
14 ltadd1 10008 . . . . . . . . 9  |-  ( ( X  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  <  B  <->  ( X  +  C )  <  ( B  +  C )
) )
15143expib 1194 . . . . . . . 8  |-  ( X  e.  RR  ->  (
( B  e.  RR  /\  C  e.  RR )  ->  ( X  < 
B  <->  ( X  +  C )  <  ( B  +  C )
) ) )
1615com12 31 . . . . . . 7  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  RR  ->  ( X  <  B  <->  ( X  +  C )  <  ( B  +  C ) ) ) )
17163adant1 1009 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  RR  ->  ( X  <  B  <->  ( X  +  C )  <  ( B  +  C )
) ) )
1817imp 429 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  X  e.  RR )  ->  ( X  < 
B  <->  ( X  +  C )  <  ( B  +  C )
) )
1913, 18anbi12d 710 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  X  e.  RR )  ->  ( ( A  <_  X  /\  X  <  B )  <->  ( ( A  +  C )  <_  ( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
) ) )
2019pm5.32da 641 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( X  e.  RR  /\  ( A  <_  X  /\  X  <  B ) )  <->  ( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) ) ) ) )
21 readdcl 9564 . . . . . . . 8  |-  ( ( X  e.  RR  /\  C  e.  RR )  ->  ( X  +  C
)  e.  RR )
2221expcom 435 . . . . . . 7  |-  ( C  e.  RR  ->  ( X  e.  RR  ->  ( X  +  C )  e.  RR ) )
2322anim1d 564 . . . . . 6  |-  ( C  e.  RR  ->  (
( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C
)  <  ( B  +  C ) ) )  ->  ( ( X  +  C )  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) ) ) ) )
24 3anass 972 . . . . . 6  |-  ( ( ( X  +  C
)  e.  RR  /\  ( A  +  C
)  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) )  <->  ( ( X  +  C )  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) ) ) )
2523, 24syl6ibr 227 . . . . 5  |-  ( C  e.  RR  ->  (
( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C
)  <  ( B  +  C ) ) )  ->  ( ( X  +  C )  e.  RR  /\  ( A  +  C )  <_ 
( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
) ) )
26253ad2ant3 1014 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C
)  <  ( B  +  C ) ) )  ->  ( ( X  +  C )  e.  RR  /\  ( A  +  C )  <_ 
( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
) ) )
27 readdcl 9564 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  +  C
)  e.  RR )
28273adant2 1010 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  +  C )  e.  RR )
29 readdcl 9564 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C
)  e.  RR )
30293adant1 1009 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  RR )
31 rexr 9628 . . . . . . 7  |-  ( ( B  +  C )  e.  RR  ->  ( B  +  C )  e.  RR* )
32 elico2 11577 . . . . . . 7  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR* )  ->  ( ( X  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) )  <-> 
( ( X  +  C )  e.  RR  /\  ( A  +  C
)  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) ) ) )
3331, 32sylan2 474 . . . . . 6  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR )  ->  ( ( X  +  C )  e.  ( ( A  +  C ) [,) ( B  +  C )
)  <->  ( ( X  +  C )  e.  RR  /\  ( A  +  C )  <_ 
( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
) ) )
3433biimprd 223 . . . . 5  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR )  ->  ( ( ( X  +  C )  e.  RR  /\  ( A  +  C )  <_  ( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
)  ->  ( X  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) ) ) )
3528, 30, 34syl2anc 661 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( X  +  C )  e.  RR  /\  ( A  +  C
)  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) )  ->  ( X  +  C )  e.  ( ( A  +  C ) [,) ( B  +  C )
) ) )
3626, 35syld 44 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C
)  <  ( B  +  C ) ) )  ->  ( X  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) ) ) )
3720, 36sylbid 215 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( X  e.  RR  /\  ( A  <_  X  /\  X  <  B ) )  ->  ( X  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) ) ) )
387, 37syld 44 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  +  C )  e.  ( ( A  +  C ) [,) ( B  +  C )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    e. wcel 1762   class class class wbr 4440  (class class class)co 6275   RRcr 9480    + caddc 9484   RR*cxr 9616    < clt 9617    <_ cle 9618   [,)cico 11520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-po 4793  df-so 4794  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-ico 11524
This theorem is referenced by:  icoshftf1o  11632
  Copyright terms: Public domain W3C validator