MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfhmeo Structured version   Unicode version

Theorem icopnfhmeo 21609
Description: The defined bijection from  [ 0 ,  1 ) to  [ 0 , +oo ) is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
icopnfhmeo.f  |-  F  =  ( x  e.  ( 0 [,) 1 ) 
|->  ( x  /  (
1  -  x ) ) )
icopnfhmeo.j  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
icopnfhmeo  |-  ( F 
Isom  <  ,  <  (
( 0 [,) 1
) ,  ( 0 [,) +oo ) )  /\  F  e.  ( ( Jt  ( 0 [,) 1 ) ) Homeo ( Jt  ( 0 [,) +oo ) ) ) )
Distinct variable group:    x, J
Allowed substitution hint:    F( x)

Proof of Theorem icopnfhmeo
Dummy variables  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icopnfhmeo.f . . . . 5  |-  F  =  ( x  e.  ( 0 [,) 1 ) 
|->  ( x  /  (
1  -  x ) ) )
21icopnfcnv 21608 . . . 4  |-  ( F : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo )  /\  `' F  =  ( y  e.  ( 0 [,) +oo )  |->  ( y  /  (
1  +  y ) ) ) )
32simpli 456 . . 3  |-  F :
( 0 [,) 1
)
-1-1-onto-> ( 0 [,) +oo )
4 0re 9585 . . . . . . . . . . 11  |-  0  e.  RR
5 1re 9584 . . . . . . . . . . . 12  |-  1  e.  RR
65rexri 9635 . . . . . . . . . . 11  |-  1  e.  RR*
7 elico2 11591 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  1  e.  RR* )  -> 
( x  e.  ( 0 [,) 1 )  <-> 
( x  e.  RR  /\  0  <_  x  /\  x  <  1 ) ) )
84, 6, 7mp2an 670 . . . . . . . . . 10  |-  ( x  e.  ( 0 [,) 1 )  <->  ( x  e.  RR  /\  0  <_  x  /\  x  <  1
) )
98simp1bi 1009 . . . . . . . . 9  |-  ( x  e.  ( 0 [,) 1 )  ->  x  e.  RR )
109ssriv 3493 . . . . . . . 8  |-  ( 0 [,) 1 )  C_  RR
1110sseli 3485 . . . . . . 7  |-  ( z  e.  ( 0 [,) 1 )  ->  z  e.  RR )
1211adantr 463 . . . . . 6  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  z  e.  RR )
13 elico2 11591 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  1  e.  RR* )  -> 
( w  e.  ( 0 [,) 1 )  <-> 
( w  e.  RR  /\  0  <_  w  /\  w  <  1 ) ) )
144, 6, 13mp2an 670 . . . . . . . . . 10  |-  ( w  e.  ( 0 [,) 1 )  <->  ( w  e.  RR  /\  0  <_  w  /\  w  <  1
) )
1514simp3bi 1011 . . . . . . . . 9  |-  ( w  e.  ( 0 [,) 1 )  ->  w  <  1 )
1610sseli 3485 . . . . . . . . . 10  |-  ( w  e.  ( 0 [,) 1 )  ->  w  e.  RR )
17 difrp 11255 . . . . . . . . . 10  |-  ( ( w  e.  RR  /\  1  e.  RR )  ->  ( w  <  1  <->  ( 1  -  w )  e.  RR+ ) )
1816, 5, 17sylancl 660 . . . . . . . . 9  |-  ( w  e.  ( 0 [,) 1 )  ->  (
w  <  1  <->  ( 1  -  w )  e.  RR+ ) )
1915, 18mpbid 210 . . . . . . . 8  |-  ( w  e.  ( 0 [,) 1 )  ->  (
1  -  w )  e.  RR+ )
2019rpregt0d 11265 . . . . . . 7  |-  ( w  e.  ( 0 [,) 1 )  ->  (
( 1  -  w
)  e.  RR  /\  0  <  ( 1  -  w ) ) )
2120adantl 464 . . . . . 6  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( ( 1  -  w )  e.  RR  /\  0  < 
( 1  -  w
) ) )
2216adantl 464 . . . . . 6  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  w  e.  RR )
23 elico2 11591 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  1  e.  RR* )  -> 
( z  e.  ( 0 [,) 1 )  <-> 
( z  e.  RR  /\  0  <_  z  /\  z  <  1 ) ) )
244, 6, 23mp2an 670 . . . . . . . . . 10  |-  ( z  e.  ( 0 [,) 1 )  <->  ( z  e.  RR  /\  0  <_ 
z  /\  z  <  1 ) )
2524simp3bi 1011 . . . . . . . . 9  |-  ( z  e.  ( 0 [,) 1 )  ->  z  <  1 )
26 difrp 11255 . . . . . . . . . 10  |-  ( ( z  e.  RR  /\  1  e.  RR )  ->  ( z  <  1  <->  ( 1  -  z )  e.  RR+ ) )
2711, 5, 26sylancl 660 . . . . . . . . 9  |-  ( z  e.  ( 0 [,) 1 )  ->  (
z  <  1  <->  ( 1  -  z )  e.  RR+ ) )
2825, 27mpbid 210 . . . . . . . 8  |-  ( z  e.  ( 0 [,) 1 )  ->  (
1  -  z )  e.  RR+ )
2928adantr 463 . . . . . . 7  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( 1  -  z )  e.  RR+ )
3029rpregt0d 11265 . . . . . 6  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( ( 1  -  z )  e.  RR  /\  0  < 
( 1  -  z
) ) )
31 lt2mul2div 10416 . . . . . 6  |-  ( ( ( z  e.  RR  /\  ( ( 1  -  w )  e.  RR  /\  0  <  ( 1  -  w ) ) )  /\  ( w  e.  RR  /\  (
( 1  -  z
)  e.  RR  /\  0  <  ( 1  -  z ) ) ) )  ->  ( (
z  x.  ( 1  -  w ) )  <  ( w  x.  ( 1  -  z
) )  <->  ( z  /  ( 1  -  z ) )  < 
( w  /  (
1  -  w ) ) ) )
3212, 21, 22, 30, 31syl22anc 1227 . . . . 5  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( ( z  x.  ( 1  -  w ) )  < 
( w  x.  (
1  -  z ) )  <->  ( z  / 
( 1  -  z
) )  <  (
w  /  ( 1  -  w ) ) ) )
3312, 22remulcld 9613 . . . . . . 7  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( z  x.  w )  e.  RR )
3412, 22, 33ltsub1d 10157 . . . . . 6  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( z  < 
w  <->  ( z  -  ( z  x.  w
) )  <  (
w  -  ( z  x.  w ) ) ) )
3512recnd 9611 . . . . . . . . 9  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  z  e.  CC )
36 1cnd 9601 . . . . . . . . 9  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  1  e.  CC )
3722recnd 9611 . . . . . . . . 9  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  w  e.  CC )
3835, 36, 37subdid 10008 . . . . . . . 8  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( z  x.  ( 1  -  w
) )  =  ( ( z  x.  1 )  -  ( z  x.  w ) ) )
3935mulid1d 9602 . . . . . . . . 9  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( z  x.  1 )  =  z )
4039oveq1d 6285 . . . . . . . 8  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( ( z  x.  1 )  -  ( z  x.  w
) )  =  ( z  -  ( z  x.  w ) ) )
4138, 40eqtrd 2495 . . . . . . 7  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( z  x.  ( 1  -  w
) )  =  ( z  -  ( z  x.  w ) ) )
4237, 36, 35subdid 10008 . . . . . . . 8  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( w  x.  ( 1  -  z
) )  =  ( ( w  x.  1 )  -  ( w  x.  z ) ) )
4337mulid1d 9602 . . . . . . . . 9  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( w  x.  1 )  =  w )
4437, 35mulcomd 9606 . . . . . . . . 9  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( w  x.  z )  =  ( z  x.  w ) )
4543, 44oveq12d 6288 . . . . . . . 8  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( ( w  x.  1 )  -  ( w  x.  z
) )  =  ( w  -  ( z  x.  w ) ) )
4642, 45eqtrd 2495 . . . . . . 7  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( w  x.  ( 1  -  z
) )  =  ( w  -  ( z  x.  w ) ) )
4741, 46breq12d 4452 . . . . . 6  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( ( z  x.  ( 1  -  w ) )  < 
( w  x.  (
1  -  z ) )  <->  ( z  -  ( z  x.  w
) )  <  (
w  -  ( z  x.  w ) ) ) )
4834, 47bitr4d 256 . . . . 5  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( z  < 
w  <->  ( z  x.  ( 1  -  w
) )  <  (
w  x.  ( 1  -  z ) ) ) )
49 id 22 . . . . . . . 8  |-  ( x  =  z  ->  x  =  z )
50 oveq2 6278 . . . . . . . 8  |-  ( x  =  z  ->  (
1  -  x )  =  ( 1  -  z ) )
5149, 50oveq12d 6288 . . . . . . 7  |-  ( x  =  z  ->  (
x  /  ( 1  -  x ) )  =  ( z  / 
( 1  -  z
) ) )
52 ovex 6298 . . . . . . 7  |-  ( z  /  ( 1  -  z ) )  e. 
_V
5351, 1, 52fvmpt 5931 . . . . . 6  |-  ( z  e.  ( 0 [,) 1 )  ->  ( F `  z )  =  ( z  / 
( 1  -  z
) ) )
54 id 22 . . . . . . . 8  |-  ( x  =  w  ->  x  =  w )
55 oveq2 6278 . . . . . . . 8  |-  ( x  =  w  ->  (
1  -  x )  =  ( 1  -  w ) )
5654, 55oveq12d 6288 . . . . . . 7  |-  ( x  =  w  ->  (
x  /  ( 1  -  x ) )  =  ( w  / 
( 1  -  w
) ) )
57 ovex 6298 . . . . . . 7  |-  ( w  /  ( 1  -  w ) )  e. 
_V
5856, 1, 57fvmpt 5931 . . . . . 6  |-  ( w  e.  ( 0 [,) 1 )  ->  ( F `  w )  =  ( w  / 
( 1  -  w
) ) )
5953, 58breqan12d 4454 . . . . 5  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( ( F `
 z )  < 
( F `  w
)  <->  ( z  / 
( 1  -  z
) )  <  (
w  /  ( 1  -  w ) ) ) )
6032, 48, 593bitr4d 285 . . . 4  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( z  < 
w  <->  ( F `  z )  <  ( F `  w )
) )
6160rgen2a 2881 . . 3  |-  A. z  e.  ( 0 [,) 1
) A. w  e.  ( 0 [,) 1
) ( z  < 
w  <->  ( F `  z )  <  ( F `  w )
)
62 df-isom 5579 . . 3  |-  ( F 
Isom  <  ,  <  (
( 0 [,) 1
) ,  ( 0 [,) +oo ) )  <-> 
( F : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo )  /\  A. z  e.  ( 0 [,) 1 ) A. w  e.  ( 0 [,) 1 ) ( z  <  w  <->  ( F `  z )  <  ( F `  w ) ) ) )
633, 61, 62mpbir2an 918 . 2  |-  F  Isom  <  ,  <  ( ( 0 [,) 1 ) ,  ( 0 [,) +oo ) )
64 letsr 16056 . . . . . 6  |-  <_  e.  TosetRel
6564elexi 3116 . . . . 5  |-  <_  e.  _V
6665inex1 4578 . . . 4  |-  (  <_  i^i  ( ( 0 [,) 1 )  X.  (
0 [,) 1 ) ) )  e.  _V
6765inex1 4578 . . . 4  |-  (  <_  i^i  ( ( 0 [,) +oo )  X.  (
0 [,) +oo )
) )  e.  _V
68 icossxr 11612 . . . . . . . 8  |-  ( 0 [,) 1 )  C_  RR*
69 icossxr 11612 . . . . . . . 8  |-  ( 0 [,) +oo )  C_  RR*
70 leiso 12492 . . . . . . . 8  |-  ( ( ( 0 [,) 1
)  C_  RR*  /\  (
0 [,) +oo )  C_ 
RR* )  ->  ( F  Isom  <  ,  <  ( ( 0 [,) 1
) ,  ( 0 [,) +oo ) )  <-> 
F  Isom  <_  ,  <_  ( ( 0 [,) 1
) ,  ( 0 [,) +oo ) ) ) )
7168, 69, 70mp2an 670 . . . . . . 7  |-  ( F 
Isom  <  ,  <  (
( 0 [,) 1
) ,  ( 0 [,) +oo ) )  <-> 
F  Isom  <_  ,  <_  ( ( 0 [,) 1
) ,  ( 0 [,) +oo ) ) )
7263, 71mpbi 208 . . . . . 6  |-  F  Isom  <_  ,  <_  ( ( 0 [,) 1 ) ,  ( 0 [,) +oo ) )
73 isores1 6205 . . . . . 6  |-  ( F 
Isom  <_  ,  <_  (
( 0 [,) 1
) ,  ( 0 [,) +oo ) )  <-> 
F  Isom  (  <_  i^i  ( ( 0 [,) 1 )  X.  (
0 [,) 1 ) ) ) ,  <_  ( ( 0 [,) 1
) ,  ( 0 [,) +oo ) ) )
7472, 73mpbi 208 . . . . 5  |-  F  Isom  (  <_  i^i  ( (
0 [,) 1 )  X.  ( 0 [,) 1 ) ) ) ,  <_  ( (
0 [,) 1 ) ,  ( 0 [,) +oo ) )
75 isores2 6204 . . . . 5  |-  ( F 
Isom  (  <_  i^i  (
( 0 [,) 1
)  X.  ( 0 [,) 1 ) ) ) ,  <_  (
( 0 [,) 1
) ,  ( 0 [,) +oo ) )  <-> 
F  Isom  (  <_  i^i  ( ( 0 [,) 1 )  X.  (
0 [,) 1 ) ) ) ,  (  <_  i^i  ( (
0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) ( ( 0 [,) 1
) ,  ( 0 [,) +oo ) ) )
7674, 75mpbi 208 . . . 4  |-  F  Isom  (  <_  i^i  ( (
0 [,) 1 )  X.  ( 0 [,) 1 ) ) ) ,  (  <_  i^i  ( ( 0 [,) +oo )  X.  (
0 [,) +oo )
) ) ( ( 0 [,) 1 ) ,  ( 0 [,) +oo ) )
77 tsrps 16050 . . . . . . . 8  |-  (  <_  e. 
TosetRel  ->  <_  e.  PosetRel )
7864, 77ax-mp 5 . . . . . . 7  |-  <_  e.  PosetRel
79 ledm 16053 . . . . . . . 8  |-  RR*  =  dom  <_
8079psssdm 16045 . . . . . . 7  |-  ( (  <_  e.  PosetRel  /\  (
0 [,) 1 ) 
C_  RR* )  ->  dom  (  <_  i^i  ( (
0 [,) 1 )  X.  ( 0 [,) 1 ) ) )  =  ( 0 [,) 1 ) )
8178, 68, 80mp2an 670 . . . . . 6  |-  dom  (  <_  i^i  ( ( 0 [,) 1 )  X.  ( 0 [,) 1
) ) )  =  ( 0 [,) 1
)
8281eqcomi 2467 . . . . 5  |-  ( 0 [,) 1 )  =  dom  (  <_  i^i  ( ( 0 [,) 1 )  X.  (
0 [,) 1 ) ) )
8379psssdm 16045 . . . . . . 7  |-  ( (  <_  e.  PosetRel  /\  (
0 [,) +oo )  C_ 
RR* )  ->  dom  (  <_  i^i  ( (
0 [,) +oo )  X.  ( 0 [,) +oo ) ) )  =  ( 0 [,) +oo ) )
8478, 69, 83mp2an 670 . . . . . 6  |-  dom  (  <_  i^i  ( ( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) )  =  ( 0 [,) +oo )
8584eqcomi 2467 . . . . 5  |-  ( 0 [,) +oo )  =  dom  (  <_  i^i  ( ( 0 [,) +oo )  X.  (
0 [,) +oo )
) )
8682, 85ordthmeo 20469 . . . 4  |-  ( ( (  <_  i^i  (
( 0 [,) 1
)  X.  ( 0 [,) 1 ) ) )  e.  _V  /\  (  <_  i^i  ( (
0 [,) +oo )  X.  ( 0 [,) +oo ) ) )  e. 
_V  /\  F  Isom  (  <_  i^i  ( (
0 [,) 1 )  X.  ( 0 [,) 1 ) ) ) ,  (  <_  i^i  ( ( 0 [,) +oo )  X.  (
0 [,) +oo )
) ) ( ( 0 [,) 1 ) ,  ( 0 [,) +oo ) ) )  ->  F  e.  ( (ordTop `  (  <_  i^i  (
( 0 [,) 1
)  X.  ( 0 [,) 1 ) ) ) ) Homeo (ordTop `  (  <_  i^i  ( (
0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) ) ) )
8766, 67, 76, 86mp3an 1322 . . 3  |-  F  e.  ( (ordTop `  (  <_  i^i  ( ( 0 [,) 1 )  X.  ( 0 [,) 1
) ) ) )
Homeo (ordTop `  (  <_  i^i  ( ( 0 [,) +oo )  X.  (
0 [,) +oo )
) ) ) )
88 icopnfhmeo.j . . . . . . 7  |-  J  =  ( TopOpen ` fld )
89 eqid 2454 . . . . . . 7  |-  (ordTop `  <_  )  =  (ordTop `  <_  )
9088, 89xrrest2 21479 . . . . . 6  |-  ( ( 0 [,) 1 ) 
C_  RR  ->  ( Jt  ( 0 [,) 1 ) )  =  ( (ordTop `  <_  )t  ( 0 [,) 1 ) ) )
9110, 90ax-mp 5 . . . . 5  |-  ( Jt  ( 0 [,) 1 ) )  =  ( (ordTop `  <_  )t  ( 0 [,) 1 ) )
92 iccssico2 11601 . . . . . 6  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) 1 ) )  ->  ( x [,] y )  C_  (
0 [,) 1 ) )
9368, 92ordtrestixx 19890 . . . . 5  |-  ( (ordTop `  <_  )t  ( 0 [,) 1 ) )  =  (ordTop `  (  <_  i^i  ( ( 0 [,) 1 )  X.  (
0 [,) 1 ) ) ) )
9491, 93eqtri 2483 . . . 4  |-  ( Jt  ( 0 [,) 1 ) )  =  (ordTop `  (  <_  i^i  ( (
0 [,) 1 )  X.  ( 0 [,) 1 ) ) ) )
95 rge0ssre 11631 . . . . . 6  |-  ( 0 [,) +oo )  C_  RR
9688, 89xrrest2 21479 . . . . . 6  |-  ( ( 0 [,) +oo )  C_  RR  ->  ( Jt  (
0 [,) +oo )
)  =  ( (ordTop `  <_  )t  ( 0 [,) +oo ) ) )
9795, 96ax-mp 5 . . . . 5  |-  ( Jt  ( 0 [,) +oo )
)  =  ( (ordTop `  <_  )t  ( 0 [,) +oo ) )
98 iccssico2 11601 . . . . . 6  |-  ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( x [,] y )  C_  (
0 [,) +oo )
)
9969, 98ordtrestixx 19890 . . . . 5  |-  ( (ordTop `  <_  )t  ( 0 [,) +oo ) )  =  (ordTop `  (  <_  i^i  (
( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) )
10097, 99eqtri 2483 . . . 4  |-  ( Jt  ( 0 [,) +oo )
)  =  (ordTop `  (  <_  i^i  ( (
0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) )
10194, 100oveq12i 6282 . . 3  |-  ( ( Jt  ( 0 [,) 1
) ) Homeo ( Jt  ( 0 [,) +oo )
) )  =  ( (ordTop `  (  <_  i^i  ( ( 0 [,) 1 )  X.  (
0 [,) 1 ) ) ) ) Homeo (ordTop `  (  <_  i^i  (
( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) ) )
10287, 101eleqtrri 2541 . 2  |-  F  e.  ( ( Jt  ( 0 [,) 1 ) )
Homeo ( Jt  ( 0 [,) +oo ) ) )
10363, 102pm3.2i 453 1  |-  ( F 
Isom  <  ,  <  (
( 0 [,) 1
) ,  ( 0 [,) +oo ) )  /\  F  e.  ( ( Jt  ( 0 [,) 1 ) ) Homeo ( Jt  ( 0 [,) +oo ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   A.wral 2804   _Vcvv 3106    i^i cin 3460    C_ wss 3461   class class class wbr 4439    |-> cmpt 4497    X. cxp 4986   `'ccnv 4987   dom cdm 4988   -1-1-onto->wf1o 5569   ` cfv 5570    Isom wiso 5571  (class class class)co 6270   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486   +oocpnf 9614   RR*cxr 9616    < clt 9617    <_ cle 9618    - cmin 9796    / cdiv 10202   RR+crp 11221   [,)cico 11534   ↾t crest 14910   TopOpenctopn 14911  ordTopcordt 14988   PosetRelcps 16027    TosetRel ctsr 16028  ℂfldccnfld 18615   Homeochmeo 20420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fi 7863  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-ioc 11537  df-ico 11538  df-icc 11539  df-fz 11676  df-seq 12090  df-exp 12149  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-plusg 14797  df-mulr 14798  df-starv 14799  df-tset 14803  df-ple 14804  df-ds 14806  df-unif 14807  df-rest 14912  df-topn 14913  df-topgen 14933  df-ordt 14990  df-ps 16029  df-tsr 16030  df-psmet 18606  df-xmet 18607  df-met 18608  df-bl 18609  df-mopn 18610  df-cnfld 18616  df-top 19566  df-bases 19568  df-topon 19569  df-topsp 19570  df-cn 19895  df-hmeo 20422  df-xms 20989  df-ms 20990
This theorem is referenced by:  iccpnfhmeo  21611
  Copyright terms: Public domain W3C validator