MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfhmeo Structured version   Unicode version

Theorem icopnfhmeo 21178
Description: The defined bijection from  [ 0 ,  1 ) to  [ 0 , +oo ) is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
icopnfhmeo.f  |-  F  =  ( x  e.  ( 0 [,) 1 ) 
|->  ( x  /  (
1  -  x ) ) )
icopnfhmeo.j  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
icopnfhmeo  |-  ( F 
Isom  <  ,  <  (
( 0 [,) 1
) ,  ( 0 [,) +oo ) )  /\  F  e.  ( ( Jt  ( 0 [,) 1 ) ) Homeo ( Jt  ( 0 [,) +oo ) ) ) )
Distinct variable group:    x, J
Allowed substitution hint:    F( x)

Proof of Theorem icopnfhmeo
Dummy variables  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icopnfhmeo.f . . . . 5  |-  F  =  ( x  e.  ( 0 [,) 1 ) 
|->  ( x  /  (
1  -  x ) ) )
21icopnfcnv 21177 . . . 4  |-  ( F : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo )  /\  `' F  =  ( y  e.  ( 0 [,) +oo )  |->  ( y  /  (
1  +  y ) ) ) )
32simpli 458 . . 3  |-  F :
( 0 [,) 1
)
-1-1-onto-> ( 0 [,) +oo )
4 0re 9592 . . . . . . . . . . 11  |-  0  e.  RR
5 1re 9591 . . . . . . . . . . . 12  |-  1  e.  RR
65rexri 9642 . . . . . . . . . . 11  |-  1  e.  RR*
7 elico2 11584 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  1  e.  RR* )  -> 
( x  e.  ( 0 [,) 1 )  <-> 
( x  e.  RR  /\  0  <_  x  /\  x  <  1 ) ) )
84, 6, 7mp2an 672 . . . . . . . . . 10  |-  ( x  e.  ( 0 [,) 1 )  <->  ( x  e.  RR  /\  0  <_  x  /\  x  <  1
) )
98simp1bi 1011 . . . . . . . . 9  |-  ( x  e.  ( 0 [,) 1 )  ->  x  e.  RR )
109ssriv 3508 . . . . . . . 8  |-  ( 0 [,) 1 )  C_  RR
1110sseli 3500 . . . . . . 7  |-  ( z  e.  ( 0 [,) 1 )  ->  z  e.  RR )
1211adantr 465 . . . . . 6  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  z  e.  RR )
13 elico2 11584 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  1  e.  RR* )  -> 
( w  e.  ( 0 [,) 1 )  <-> 
( w  e.  RR  /\  0  <_  w  /\  w  <  1 ) ) )
144, 6, 13mp2an 672 . . . . . . . . . 10  |-  ( w  e.  ( 0 [,) 1 )  <->  ( w  e.  RR  /\  0  <_  w  /\  w  <  1
) )
1514simp3bi 1013 . . . . . . . . 9  |-  ( w  e.  ( 0 [,) 1 )  ->  w  <  1 )
1610sseli 3500 . . . . . . . . . 10  |-  ( w  e.  ( 0 [,) 1 )  ->  w  e.  RR )
17 difrp 11249 . . . . . . . . . 10  |-  ( ( w  e.  RR  /\  1  e.  RR )  ->  ( w  <  1  <->  ( 1  -  w )  e.  RR+ ) )
1816, 5, 17sylancl 662 . . . . . . . . 9  |-  ( w  e.  ( 0 [,) 1 )  ->  (
w  <  1  <->  ( 1  -  w )  e.  RR+ ) )
1915, 18mpbid 210 . . . . . . . 8  |-  ( w  e.  ( 0 [,) 1 )  ->  (
1  -  w )  e.  RR+ )
2019rpregt0d 11258 . . . . . . 7  |-  ( w  e.  ( 0 [,) 1 )  ->  (
( 1  -  w
)  e.  RR  /\  0  <  ( 1  -  w ) ) )
2120adantl 466 . . . . . 6  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( ( 1  -  w )  e.  RR  /\  0  < 
( 1  -  w
) ) )
2216adantl 466 . . . . . 6  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  w  e.  RR )
23 elico2 11584 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  1  e.  RR* )  -> 
( z  e.  ( 0 [,) 1 )  <-> 
( z  e.  RR  /\  0  <_  z  /\  z  <  1 ) ) )
244, 6, 23mp2an 672 . . . . . . . . . 10  |-  ( z  e.  ( 0 [,) 1 )  <->  ( z  e.  RR  /\  0  <_ 
z  /\  z  <  1 ) )
2524simp3bi 1013 . . . . . . . . 9  |-  ( z  e.  ( 0 [,) 1 )  ->  z  <  1 )
26 difrp 11249 . . . . . . . . . 10  |-  ( ( z  e.  RR  /\  1  e.  RR )  ->  ( z  <  1  <->  ( 1  -  z )  e.  RR+ ) )
2711, 5, 26sylancl 662 . . . . . . . . 9  |-  ( z  e.  ( 0 [,) 1 )  ->  (
z  <  1  <->  ( 1  -  z )  e.  RR+ ) )
2825, 27mpbid 210 . . . . . . . 8  |-  ( z  e.  ( 0 [,) 1 )  ->  (
1  -  z )  e.  RR+ )
2928adantr 465 . . . . . . 7  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( 1  -  z )  e.  RR+ )
3029rpregt0d 11258 . . . . . 6  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( ( 1  -  z )  e.  RR  /\  0  < 
( 1  -  z
) ) )
31 lt2mul2div 10417 . . . . . 6  |-  ( ( ( z  e.  RR  /\  ( ( 1  -  w )  e.  RR  /\  0  <  ( 1  -  w ) ) )  /\  ( w  e.  RR  /\  (
( 1  -  z
)  e.  RR  /\  0  <  ( 1  -  z ) ) ) )  ->  ( (
z  x.  ( 1  -  w ) )  <  ( w  x.  ( 1  -  z
) )  <->  ( z  /  ( 1  -  z ) )  < 
( w  /  (
1  -  w ) ) ) )
3212, 21, 22, 30, 31syl22anc 1229 . . . . 5  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( ( z  x.  ( 1  -  w ) )  < 
( w  x.  (
1  -  z ) )  <->  ( z  / 
( 1  -  z
) )  <  (
w  /  ( 1  -  w ) ) ) )
3312, 22remulcld 9620 . . . . . . 7  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( z  x.  w )  e.  RR )
3412, 22, 33ltsub1d 10157 . . . . . 6  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( z  < 
w  <->  ( z  -  ( z  x.  w
) )  <  (
w  -  ( z  x.  w ) ) ) )
3512recnd 9618 . . . . . . . . 9  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  z  e.  CC )
36 ax-1cn 9546 . . . . . . . . . 10  |-  1  e.  CC
3736a1i 11 . . . . . . . . 9  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  1  e.  CC )
3822recnd 9618 . . . . . . . . 9  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  w  e.  CC )
3935, 37, 38subdid 10008 . . . . . . . 8  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( z  x.  ( 1  -  w
) )  =  ( ( z  x.  1 )  -  ( z  x.  w ) ) )
4035mulid1d 9609 . . . . . . . . 9  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( z  x.  1 )  =  z )
4140oveq1d 6297 . . . . . . . 8  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( ( z  x.  1 )  -  ( z  x.  w
) )  =  ( z  -  ( z  x.  w ) ) )
4239, 41eqtrd 2508 . . . . . . 7  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( z  x.  ( 1  -  w
) )  =  ( z  -  ( z  x.  w ) ) )
4338, 37, 35subdid 10008 . . . . . . . 8  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( w  x.  ( 1  -  z
) )  =  ( ( w  x.  1 )  -  ( w  x.  z ) ) )
4438mulid1d 9609 . . . . . . . . 9  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( w  x.  1 )  =  w )
4538, 35mulcomd 9613 . . . . . . . . 9  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( w  x.  z )  =  ( z  x.  w ) )
4644, 45oveq12d 6300 . . . . . . . 8  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( ( w  x.  1 )  -  ( w  x.  z
) )  =  ( w  -  ( z  x.  w ) ) )
4743, 46eqtrd 2508 . . . . . . 7  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( w  x.  ( 1  -  z
) )  =  ( w  -  ( z  x.  w ) ) )
4842, 47breq12d 4460 . . . . . 6  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( ( z  x.  ( 1  -  w ) )  < 
( w  x.  (
1  -  z ) )  <->  ( z  -  ( z  x.  w
) )  <  (
w  -  ( z  x.  w ) ) ) )
4934, 48bitr4d 256 . . . . 5  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( z  < 
w  <->  ( z  x.  ( 1  -  w
) )  <  (
w  x.  ( 1  -  z ) ) ) )
50 id 22 . . . . . . . 8  |-  ( x  =  z  ->  x  =  z )
51 oveq2 6290 . . . . . . . 8  |-  ( x  =  z  ->  (
1  -  x )  =  ( 1  -  z ) )
5250, 51oveq12d 6300 . . . . . . 7  |-  ( x  =  z  ->  (
x  /  ( 1  -  x ) )  =  ( z  / 
( 1  -  z
) ) )
53 ovex 6307 . . . . . . 7  |-  ( z  /  ( 1  -  z ) )  e. 
_V
5452, 1, 53fvmpt 5948 . . . . . 6  |-  ( z  e.  ( 0 [,) 1 )  ->  ( F `  z )  =  ( z  / 
( 1  -  z
) ) )
55 id 22 . . . . . . . 8  |-  ( x  =  w  ->  x  =  w )
56 oveq2 6290 . . . . . . . 8  |-  ( x  =  w  ->  (
1  -  x )  =  ( 1  -  w ) )
5755, 56oveq12d 6300 . . . . . . 7  |-  ( x  =  w  ->  (
x  /  ( 1  -  x ) )  =  ( w  / 
( 1  -  w
) ) )
58 ovex 6307 . . . . . . 7  |-  ( w  /  ( 1  -  w ) )  e. 
_V
5957, 1, 58fvmpt 5948 . . . . . 6  |-  ( w  e.  ( 0 [,) 1 )  ->  ( F `  w )  =  ( w  / 
( 1  -  w
) ) )
6054, 59breqan12d 4462 . . . . 5  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( ( F `
 z )  < 
( F `  w
)  <->  ( z  / 
( 1  -  z
) )  <  (
w  /  ( 1  -  w ) ) ) )
6132, 49, 603bitr4d 285 . . . 4  |-  ( ( z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) )  ->  ( z  < 
w  <->  ( F `  z )  <  ( F `  w )
) )
6261rgen2a 2891 . . 3  |-  A. z  e.  ( 0 [,) 1
) A. w  e.  ( 0 [,) 1
) ( z  < 
w  <->  ( F `  z )  <  ( F `  w )
)
63 df-isom 5595 . . 3  |-  ( F 
Isom  <  ,  <  (
( 0 [,) 1
) ,  ( 0 [,) +oo ) )  <-> 
( F : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo )  /\  A. z  e.  ( 0 [,) 1 ) A. w  e.  ( 0 [,) 1 ) ( z  <  w  <->  ( F `  z )  <  ( F `  w ) ) ) )
643, 62, 63mpbir2an 918 . 2  |-  F  Isom  <  ,  <  ( ( 0 [,) 1 ) ,  ( 0 [,) +oo ) )
65 letsr 15710 . . . . . 6  |-  <_  e.  TosetRel
6665elexi 3123 . . . . 5  |-  <_  e.  _V
6766inex1 4588 . . . 4  |-  (  <_  i^i  ( ( 0 [,) 1 )  X.  (
0 [,) 1 ) ) )  e.  _V
6866inex1 4588 . . . 4  |-  (  <_  i^i  ( ( 0 [,) +oo )  X.  (
0 [,) +oo )
) )  e.  _V
69 icossxr 11605 . . . . . . . 8  |-  ( 0 [,) 1 )  C_  RR*
70 icossxr 11605 . . . . . . . 8  |-  ( 0 [,) +oo )  C_  RR*
71 leiso 12470 . . . . . . . 8  |-  ( ( ( 0 [,) 1
)  C_  RR*  /\  (
0 [,) +oo )  C_ 
RR* )  ->  ( F  Isom  <  ,  <  ( ( 0 [,) 1
) ,  ( 0 [,) +oo ) )  <-> 
F  Isom  <_  ,  <_  ( ( 0 [,) 1
) ,  ( 0 [,) +oo ) ) ) )
7269, 70, 71mp2an 672 . . . . . . 7  |-  ( F 
Isom  <  ,  <  (
( 0 [,) 1
) ,  ( 0 [,) +oo ) )  <-> 
F  Isom  <_  ,  <_  ( ( 0 [,) 1
) ,  ( 0 [,) +oo ) ) )
7364, 72mpbi 208 . . . . . 6  |-  F  Isom  <_  ,  <_  ( ( 0 [,) 1 ) ,  ( 0 [,) +oo ) )
74 isores1 6216 . . . . . 6  |-  ( F 
Isom  <_  ,  <_  (
( 0 [,) 1
) ,  ( 0 [,) +oo ) )  <-> 
F  Isom  (  <_  i^i  ( ( 0 [,) 1 )  X.  (
0 [,) 1 ) ) ) ,  <_  ( ( 0 [,) 1
) ,  ( 0 [,) +oo ) ) )
7573, 74mpbi 208 . . . . 5  |-  F  Isom  (  <_  i^i  ( (
0 [,) 1 )  X.  ( 0 [,) 1 ) ) ) ,  <_  ( (
0 [,) 1 ) ,  ( 0 [,) +oo ) )
76 isores2 6215 . . . . 5  |-  ( F 
Isom  (  <_  i^i  (
( 0 [,) 1
)  X.  ( 0 [,) 1 ) ) ) ,  <_  (
( 0 [,) 1
) ,  ( 0 [,) +oo ) )  <-> 
F  Isom  (  <_  i^i  ( ( 0 [,) 1 )  X.  (
0 [,) 1 ) ) ) ,  (  <_  i^i  ( (
0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) ( ( 0 [,) 1
) ,  ( 0 [,) +oo ) ) )
7775, 76mpbi 208 . . . 4  |-  F  Isom  (  <_  i^i  ( (
0 [,) 1 )  X.  ( 0 [,) 1 ) ) ) ,  (  <_  i^i  ( ( 0 [,) +oo )  X.  (
0 [,) +oo )
) ) ( ( 0 [,) 1 ) ,  ( 0 [,) +oo ) )
78 tsrps 15704 . . . . . . . 8  |-  (  <_  e. 
TosetRel  ->  <_  e.  PosetRel )
7965, 78ax-mp 5 . . . . . . 7  |-  <_  e.  PosetRel
80 ledm 15707 . . . . . . . 8  |-  RR*  =  dom  <_
8180psssdm 15699 . . . . . . 7  |-  ( (  <_  e.  PosetRel  /\  (
0 [,) 1 ) 
C_  RR* )  ->  dom  (  <_  i^i  ( (
0 [,) 1 )  X.  ( 0 [,) 1 ) ) )  =  ( 0 [,) 1 ) )
8279, 69, 81mp2an 672 . . . . . 6  |-  dom  (  <_  i^i  ( ( 0 [,) 1 )  X.  ( 0 [,) 1
) ) )  =  ( 0 [,) 1
)
8382eqcomi 2480 . . . . 5  |-  ( 0 [,) 1 )  =  dom  (  <_  i^i  ( ( 0 [,) 1 )  X.  (
0 [,) 1 ) ) )
8480psssdm 15699 . . . . . . 7  |-  ( (  <_  e.  PosetRel  /\  (
0 [,) +oo )  C_ 
RR* )  ->  dom  (  <_  i^i  ( (
0 [,) +oo )  X.  ( 0 [,) +oo ) ) )  =  ( 0 [,) +oo ) )
8579, 70, 84mp2an 672 . . . . . 6  |-  dom  (  <_  i^i  ( ( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) )  =  ( 0 [,) +oo )
8685eqcomi 2480 . . . . 5  |-  ( 0 [,) +oo )  =  dom  (  <_  i^i  ( ( 0 [,) +oo )  X.  (
0 [,) +oo )
) )
8783, 86ordthmeo 20038 . . . 4  |-  ( ( (  <_  i^i  (
( 0 [,) 1
)  X.  ( 0 [,) 1 ) ) )  e.  _V  /\  (  <_  i^i  ( (
0 [,) +oo )  X.  ( 0 [,) +oo ) ) )  e. 
_V  /\  F  Isom  (  <_  i^i  ( (
0 [,) 1 )  X.  ( 0 [,) 1 ) ) ) ,  (  <_  i^i  ( ( 0 [,) +oo )  X.  (
0 [,) +oo )
) ) ( ( 0 [,) 1 ) ,  ( 0 [,) +oo ) ) )  ->  F  e.  ( (ordTop `  (  <_  i^i  (
( 0 [,) 1
)  X.  ( 0 [,) 1 ) ) ) ) Homeo (ordTop `  (  <_  i^i  ( (
0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) ) ) )
8867, 68, 77, 87mp3an 1324 . . 3  |-  F  e.  ( (ordTop `  (  <_  i^i  ( ( 0 [,) 1 )  X.  ( 0 [,) 1
) ) ) )
Homeo (ordTop `  (  <_  i^i  ( ( 0 [,) +oo )  X.  (
0 [,) +oo )
) ) ) )
89 icopnfhmeo.j . . . . . . 7  |-  J  =  ( TopOpen ` fld )
90 eqid 2467 . . . . . . 7  |-  (ordTop `  <_  )  =  (ordTop `  <_  )
9189, 90xrrest2 21048 . . . . . 6  |-  ( ( 0 [,) 1 ) 
C_  RR  ->  ( Jt  ( 0 [,) 1 ) )  =  ( (ordTop `  <_  )t  ( 0 [,) 1 ) ) )
9210, 91ax-mp 5 . . . . 5  |-  ( Jt  ( 0 [,) 1 ) )  =  ( (ordTop `  <_  )t  ( 0 [,) 1 ) )
93 iccssico2 11594 . . . . . 6  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) 1 ) )  ->  ( x [,] y )  C_  (
0 [,) 1 ) )
9469, 93ordtrestixx 19489 . . . . 5  |-  ( (ordTop `  <_  )t  ( 0 [,) 1 ) )  =  (ordTop `  (  <_  i^i  ( ( 0 [,) 1 )  X.  (
0 [,) 1 ) ) ) )
9592, 94eqtri 2496 . . . 4  |-  ( Jt  ( 0 [,) 1 ) )  =  (ordTop `  (  <_  i^i  ( (
0 [,) 1 )  X.  ( 0 [,) 1 ) ) ) )
96 elrege0 11623 . . . . . . . 8  |-  ( y  e.  ( 0 [,) +oo )  <->  ( y  e.  RR  /\  0  <_ 
y ) )
9796simplbi 460 . . . . . . 7  |-  ( y  e.  ( 0 [,) +oo )  ->  y  e.  RR )
9897ssriv 3508 . . . . . 6  |-  ( 0 [,) +oo )  C_  RR
9989, 90xrrest2 21048 . . . . . 6  |-  ( ( 0 [,) +oo )  C_  RR  ->  ( Jt  (
0 [,) +oo )
)  =  ( (ordTop `  <_  )t  ( 0 [,) +oo ) ) )
10098, 99ax-mp 5 . . . . 5  |-  ( Jt  ( 0 [,) +oo )
)  =  ( (ordTop `  <_  )t  ( 0 [,) +oo ) )
101 iccssico2 11594 . . . . . 6  |-  ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( x [,] y )  C_  (
0 [,) +oo )
)
10270, 101ordtrestixx 19489 . . . . 5  |-  ( (ordTop `  <_  )t  ( 0 [,) +oo ) )  =  (ordTop `  (  <_  i^i  (
( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) )
103100, 102eqtri 2496 . . . 4  |-  ( Jt  ( 0 [,) +oo )
)  =  (ordTop `  (  <_  i^i  ( (
0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) )
10495, 103oveq12i 6294 . . 3  |-  ( ( Jt  ( 0 [,) 1
) ) Homeo ( Jt  ( 0 [,) +oo )
) )  =  ( (ordTop `  (  <_  i^i  ( ( 0 [,) 1 )  X.  (
0 [,) 1 ) ) ) ) Homeo (ordTop `  (  <_  i^i  (
( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) ) )
10588, 104eleqtrri 2554 . 2  |-  F  e.  ( ( Jt  ( 0 [,) 1 ) )
Homeo ( Jt  ( 0 [,) +oo ) ) )
10664, 105pm3.2i 455 1  |-  ( F 
Isom  <  ,  <  (
( 0 [,) 1
) ,  ( 0 [,) +oo ) )  /\  F  e.  ( ( Jt  ( 0 [,) 1 ) ) Homeo ( Jt  ( 0 [,) +oo ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113    i^i cin 3475    C_ wss 3476   class class class wbr 4447    |-> cmpt 4505    X. cxp 4997   `'ccnv 4998   dom cdm 4999   -1-1-onto->wf1o 5585   ` cfv 5586    Isom wiso 5587  (class class class)co 6282   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493   +oocpnf 9621   RR*cxr 9623    < clt 9624    <_ cle 9625    - cmin 9801    / cdiv 10202   RR+crp 11216   [,)cico 11527   ↾t crest 14672   TopOpenctopn 14673  ordTopcordt 14750   PosetRelcps 15681    TosetRel ctsr 15682  ℂfldccnfld 18191   Homeochmeo 19989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fi 7867  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ioc 11530  df-ico 11531  df-icc 11532  df-fz 11669  df-seq 12072  df-exp 12131  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-plusg 14564  df-mulr 14565  df-starv 14566  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-rest 14674  df-topn 14675  df-topgen 14695  df-ordt 14752  df-ps 15683  df-tsr 15684  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-cnfld 18192  df-top 19166  df-bases 19168  df-topon 19169  df-topsp 19170  df-cn 19494  df-hmeo 19991  df-xms 20558  df-ms 20559
This theorem is referenced by:  iccpnfhmeo  21180
  Copyright terms: Public domain W3C validator