MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfcnv Structured version   Unicode version

Theorem icopnfcnv 21174
Description: Define a bijection from  [ 0 ,  1 ) to  [
0 , +oo ). (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypothesis
Ref Expression
icopnfhmeo.f  |-  F  =  ( x  e.  ( 0 [,) 1 ) 
|->  ( x  /  (
1  -  x ) ) )
Assertion
Ref Expression
icopnfcnv  |-  ( F : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo )  /\  `' F  =  ( y  e.  ( 0 [,) +oo )  |->  ( y  /  (
1  +  y ) ) ) )
Distinct variable groups:    x, y    y, F
Allowed substitution hint:    F( x)

Proof of Theorem icopnfcnv
StepHypRef Expression
1 icopnfhmeo.f . . 3  |-  F  =  ( x  e.  ( 0 [,) 1 ) 
|->  ( x  /  (
1  -  x ) ) )
2 0re 9592 . . . . . . . 8  |-  0  e.  RR
3 1re 9591 . . . . . . . . 9  |-  1  e.  RR
43rexri 9642 . . . . . . . 8  |-  1  e.  RR*
5 elico2 11584 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  1  e.  RR* )  -> 
( x  e.  ( 0 [,) 1 )  <-> 
( x  e.  RR  /\  0  <_  x  /\  x  <  1 ) ) )
62, 4, 5mp2an 672 . . . . . . 7  |-  ( x  e.  ( 0 [,) 1 )  <->  ( x  e.  RR  /\  0  <_  x  /\  x  <  1
) )
76simp1bi 1011 . . . . . 6  |-  ( x  e.  ( 0 [,) 1 )  ->  x  e.  RR )
86simp3bi 1013 . . . . . . 7  |-  ( x  e.  ( 0 [,) 1 )  ->  x  <  1 )
9 difrp 11249 . . . . . . . 8  |-  ( ( x  e.  RR  /\  1  e.  RR )  ->  ( x  <  1  <->  ( 1  -  x )  e.  RR+ ) )
107, 3, 9sylancl 662 . . . . . . 7  |-  ( x  e.  ( 0 [,) 1 )  ->  (
x  <  1  <->  ( 1  -  x )  e.  RR+ ) )
118, 10mpbid 210 . . . . . 6  |-  ( x  e.  ( 0 [,) 1 )  ->  (
1  -  x )  e.  RR+ )
127, 11rerpdivcld 11279 . . . . 5  |-  ( x  e.  ( 0 [,) 1 )  ->  (
x  /  ( 1  -  x ) )  e.  RR )
136simp2bi 1012 . . . . . 6  |-  ( x  e.  ( 0 [,) 1 )  ->  0  <_  x )
147, 11, 13divge0d 11288 . . . . 5  |-  ( x  e.  ( 0 [,) 1 )  ->  0  <_  ( x  /  (
1  -  x ) ) )
15 elrege0 11623 . . . . 5  |-  ( ( x  /  ( 1  -  x ) )  e.  ( 0 [,) +oo )  <->  ( ( x  /  ( 1  -  x ) )  e.  RR  /\  0  <_ 
( x  /  (
1  -  x ) ) ) )
1612, 14, 15sylanbrc 664 . . . 4  |-  ( x  e.  ( 0 [,) 1 )  ->  (
x  /  ( 1  -  x ) )  e.  ( 0 [,) +oo ) )
1716adantl 466 . . 3  |-  ( ( T.  /\  x  e.  ( 0 [,) 1
) )  ->  (
x  /  ( 1  -  x ) )  e.  ( 0 [,) +oo ) )
18 elrege0 11623 . . . . . . 7  |-  ( y  e.  ( 0 [,) +oo )  <->  ( y  e.  RR  /\  0  <_ 
y ) )
1918simplbi 460 . . . . . 6  |-  ( y  e.  ( 0 [,) +oo )  ->  y  e.  RR )
20 readdcl 9571 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  y  e.  RR )  ->  ( 1  +  y )  e.  RR )
213, 19, 20sylancr 663 . . . . . . 7  |-  ( y  e.  ( 0 [,) +oo )  ->  ( 1  +  y )  e.  RR )
222a1i 11 . . . . . . . 8  |-  ( y  e.  ( 0 [,) +oo )  ->  0  e.  RR )
2318simprbi 464 . . . . . . . 8  |-  ( y  e.  ( 0 [,) +oo )  ->  0  <_ 
y )
2419ltp1d 10472 . . . . . . . . 9  |-  ( y  e.  ( 0 [,) +oo )  ->  y  < 
( y  +  1 ) )
25 ax-1cn 9546 . . . . . . . . . 10  |-  1  e.  CC
2619recnd 9618 . . . . . . . . . 10  |-  ( y  e.  ( 0 [,) +oo )  ->  y  e.  CC )
27 addcom 9761 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  y  e.  CC )  ->  ( 1  +  y )  =  ( y  +  1 ) )
2825, 26, 27sylancr 663 . . . . . . . . 9  |-  ( y  e.  ( 0 [,) +oo )  ->  ( 1  +  y )  =  ( y  +  1 ) )
2924, 28breqtrrd 4473 . . . . . . . 8  |-  ( y  e.  ( 0 [,) +oo )  ->  y  < 
( 1  +  y ) )
3022, 19, 21, 23, 29lelttrd 9735 . . . . . . 7  |-  ( y  e.  ( 0 [,) +oo )  ->  0  < 
( 1  +  y ) )
3121, 30elrpd 11250 . . . . . 6  |-  ( y  e.  ( 0 [,) +oo )  ->  ( 1  +  y )  e.  RR+ )
3219, 31rerpdivcld 11279 . . . . 5  |-  ( y  e.  ( 0 [,) +oo )  ->  ( y  /  ( 1  +  y ) )  e.  RR )
33 divge0 10407 . . . . . 6  |-  ( ( ( y  e.  RR  /\  0  <_  y )  /\  ( ( 1  +  y )  e.  RR  /\  0  <  ( 1  +  y ) ) )  ->  0  <_  ( y  /  ( 1  +  y ) ) )
3419, 23, 21, 30, 33syl22anc 1229 . . . . 5  |-  ( y  e.  ( 0 [,) +oo )  ->  0  <_ 
( y  /  (
1  +  y ) ) )
3521recnd 9618 . . . . . . . 8  |-  ( y  e.  ( 0 [,) +oo )  ->  ( 1  +  y )  e.  CC )
3635mulid1d 9609 . . . . . . 7  |-  ( y  e.  ( 0 [,) +oo )  ->  ( ( 1  +  y )  x.  1 )  =  ( 1  +  y ) )
3729, 36breqtrrd 4473 . . . . . 6  |-  ( y  e.  ( 0 [,) +oo )  ->  y  < 
( ( 1  +  y )  x.  1 ) )
383a1i 11 . . . . . . 7  |-  ( y  e.  ( 0 [,) +oo )  ->  1  e.  RR )
39 ltdivmul 10413 . . . . . . 7  |-  ( ( y  e.  RR  /\  1  e.  RR  /\  (
( 1  +  y )  e.  RR  /\  0  <  ( 1  +  y ) ) )  ->  ( ( y  /  ( 1  +  y ) )  <  1  <->  y  <  (
( 1  +  y )  x.  1 ) ) )
4019, 38, 21, 30, 39syl112anc 1232 . . . . . 6  |-  ( y  e.  ( 0 [,) +oo )  ->  ( ( y  /  ( 1  +  y ) )  <  1  <->  y  <  ( ( 1  +  y )  x.  1 ) ) )
4137, 40mpbird 232 . . . . 5  |-  ( y  e.  ( 0 [,) +oo )  ->  ( y  /  ( 1  +  y ) )  <  1 )
42 elico2 11584 . . . . . 6  |-  ( ( 0  e.  RR  /\  1  e.  RR* )  -> 
( ( y  / 
( 1  +  y ) )  e.  ( 0 [,) 1 )  <-> 
( ( y  / 
( 1  +  y ) )  e.  RR  /\  0  <_  ( y  /  ( 1  +  y ) )  /\  ( y  /  (
1  +  y ) )  <  1 ) ) )
432, 4, 42mp2an 672 . . . . 5  |-  ( ( y  /  ( 1  +  y ) )  e.  ( 0 [,) 1 )  <->  ( (
y  /  ( 1  +  y ) )  e.  RR  /\  0  <_  ( y  /  (
1  +  y ) )  /\  ( y  /  ( 1  +  y ) )  <  1 ) )
4432, 34, 41, 43syl3anbrc 1180 . . . 4  |-  ( y  e.  ( 0 [,) +oo )  ->  ( y  /  ( 1  +  y ) )  e.  ( 0 [,) 1
) )
4544adantl 466 . . 3  |-  ( ( T.  /\  y  e.  ( 0 [,) +oo ) )  ->  (
y  /  ( 1  +  y ) )  e.  ( 0 [,) 1 ) )
4626adantl 466 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  y  e.  CC )
477adantr 465 . . . . . . . . . . 11  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  x  e.  RR )
4847recnd 9618 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  x  e.  CC )
4948, 46mulcld 9612 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( x  x.  y )  e.  CC )
5046, 49, 48subadd2d 9945 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( ( y  -  ( x  x.  y ) )  =  x  <->  ( x  +  ( x  x.  y
) )  =  y ) )
5125a1i 11 . . . . . . . . . . 11  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  1  e.  CC )
5251, 48, 46subdird 10009 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( ( 1  -  x )  x.  y )  =  ( ( 1  x.  y
)  -  ( x  x.  y ) ) )
5346mulid2d 9610 . . . . . . . . . . 11  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( 1  x.  y )  =  y )
5453oveq1d 6297 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( ( 1  x.  y )  -  ( x  x.  y
) )  =  ( y  -  ( x  x.  y ) ) )
5552, 54eqtrd 2508 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( ( 1  -  x )  x.  y )  =  ( y  -  ( x  x.  y ) ) )
5655eqeq1d 2469 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( ( ( 1  -  x )  x.  y )  =  x  <->  ( y  -  ( x  x.  y
) )  =  x ) )
5748, 51, 46adddid 9616 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( x  x.  ( 1  +  y ) )  =  ( ( x  x.  1 )  +  ( x  x.  y ) ) )
5848mulid1d 9609 . . . . . . . . . . 11  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( x  x.  1 )  =  x )
5958oveq1d 6297 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( ( x  x.  1 )  +  ( x  x.  y
) )  =  ( x  +  ( x  x.  y ) ) )
6057, 59eqtrd 2508 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( x  x.  ( 1  +  y ) )  =  ( x  +  ( x  x.  y ) ) )
6160eqeq1d 2469 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( ( x  x.  ( 1  +  y ) )  =  y  <->  ( x  +  ( x  x.  y
) )  =  y ) )
6250, 56, 613bitr4rd 286 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( ( x  x.  ( 1  +  y ) )  =  y  <->  ( ( 1  -  x )  x.  y )  =  x ) )
63 eqcom 2476 . . . . . . 7  |-  ( y  =  ( x  x.  ( 1  +  y ) )  <->  ( x  x.  ( 1  +  y ) )  =  y )
64 eqcom 2476 . . . . . . 7  |-  ( x  =  ( ( 1  -  x )  x.  y )  <->  ( (
1  -  x )  x.  y )  =  x )
6562, 63, 643bitr4g 288 . . . . . 6  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( y  =  ( x  x.  (
1  +  y ) )  <->  x  =  (
( 1  -  x
)  x.  y ) ) )
6635adantl 466 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( 1  +  y )  e.  CC )
6731adantl 466 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( 1  +  y )  e.  RR+ )
6867rpne0d 11257 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( 1  +  y )  =/=  0
)
6946, 48, 66, 68divmul3d 10350 . . . . . 6  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( ( y  /  ( 1  +  y ) )  =  x  <->  y  =  ( x  x.  ( 1  +  y ) ) ) )
7011adantr 465 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( 1  -  x )  e.  RR+ )
7170rpcnd 11254 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( 1  -  x )  e.  CC )
7270rpne0d 11257 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( 1  -  x )  =/=  0
)
7348, 46, 71, 72divmul2d 10349 . . . . . 6  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( ( x  /  ( 1  -  x ) )  =  y  <->  x  =  (
( 1  -  x
)  x.  y ) ) )
7465, 69, 733bitr4d 285 . . . . 5  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( ( y  /  ( 1  +  y ) )  =  x  <->  ( x  / 
( 1  -  x
) )  =  y ) )
75 eqcom 2476 . . . . 5  |-  ( x  =  ( y  / 
( 1  +  y ) )  <->  ( y  /  ( 1  +  y ) )  =  x )
76 eqcom 2476 . . . . 5  |-  ( y  =  ( x  / 
( 1  -  x
) )  <->  ( x  /  ( 1  -  x ) )  =  y )
7774, 75, 763bitr4g 288 . . . 4  |-  ( ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( x  =  ( y  /  (
1  +  y ) )  <->  y  =  ( x  /  ( 1  -  x ) ) ) )
7877adantl 466 . . 3  |-  ( ( T.  /\  ( x  e.  ( 0 [,) 1 )  /\  y  e.  ( 0 [,) +oo ) ) )  -> 
( x  =  ( y  /  ( 1  +  y ) )  <-> 
y  =  ( x  /  ( 1  -  x ) ) ) )
791, 17, 45, 78f1ocnv2d 6508 . 2  |-  ( T. 
->  ( F : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo )  /\  `' F  =  (
y  e.  ( 0 [,) +oo )  |->  ( y  /  ( 1  +  y ) ) ) ) )
8079trud 1388 1  |-  ( F : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo )  /\  `' F  =  ( y  e.  ( 0 [,) +oo )  |->  ( y  /  (
1  +  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   T. wtru 1380    e. wcel 1767   class class class wbr 4447    |-> cmpt 4505   `'ccnv 4998   -1-1-onto->wf1o 5585  (class class class)co 6282   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493   +oocpnf 9621   RR*cxr 9623    < clt 9624    <_ cle 9625    - cmin 9801    / cdiv 10202   RR+crp 11216   [,)cico 11527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-rp 11217  df-ico 11531
This theorem is referenced by:  icopnfhmeo  21175  iccpnfcnv  21176
  Copyright terms: Public domain W3C validator