Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icodiamlt Structured version   Unicode version

Theorem icodiamlt 35081
Description: Two elements in a half-open interval have separation strictly less than the difference between the endpoints. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
icodiamlt  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,) B
)  /\  D  e.  ( A [,) B ) ) )  ->  ( abs `  ( C  -  D ) )  < 
( B  -  A
) )

Proof of Theorem icodiamlt
StepHypRef Expression
1 rexr 9587 . . . 4  |-  ( B  e.  RR  ->  B  e.  RR* )
2 elico2 11557 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( C  e.  ( A [,) B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <  B ) ) )
3 elico2 11557 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( D  e.  ( A [,) B )  <-> 
( D  e.  RR  /\  A  <_  D  /\  D  <  B ) ) )
42, 3anbi12d 709 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( ( C  e.  ( A [,) B
)  /\  D  e.  ( A [,) B ) )  <->  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) ) )
54biimpd 207 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( ( C  e.  ( A [,) B
)  /\  D  e.  ( A [,) B ) )  ->  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) ) )
61, 5sylan2 472 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e.  ( A [,) B
)  /\  D  e.  ( A [,) B ) )  ->  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) ) )
7 simplr 754 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  B  e.  RR )
87recnd 9570 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  B  e.  CC )
9 simpll 752 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  A  e.  RR )
109recnd 9570 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  A  e.  CC )
118, 10negsubdi2d 9901 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  -u ( B  -  A )  =  ( A  -  B ) )
129, 7resubcld 9946 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( A  -  B )  e.  RR )
13 simprl1 1040 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  C  e.  RR )
1413, 7resubcld 9946 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( C  -  B )  e.  RR )
15 simprr1 1043 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  D  e.  RR )
1613, 15resubcld 9946 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( C  -  D )  e.  RR )
17 simprl2 1041 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  A  <_  C
)
189, 13, 7, 17lesub1dd 10126 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( A  -  B )  <_  ( C  -  B )
)
19 simprr3 1045 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  D  <  B
)
2015, 7, 13, 19ltsub2dd 10123 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( C  -  B )  <  ( C  -  D )
)
2112, 14, 16, 18, 20lelttrd 9692 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( A  -  B )  <  ( C  -  D )
)
2211, 21eqbrtrd 4412 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  -u ( B  -  A )  <  ( C  -  D )
)
237, 15resubcld 9946 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( B  -  D )  e.  RR )
247, 9resubcld 9946 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( B  -  A )  e.  RR )
25 simprl3 1042 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  C  <  B
)
2613, 7, 15, 25ltsub1dd 10122 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( C  -  D )  <  ( B  -  D )
)
27 simprr2 1044 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  A  <_  D
)
289, 15, 7, 27lesub2dd 10127 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( B  -  D )  <_  ( B  -  A )
)
2916, 23, 24, 26, 28ltletrd 9694 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( C  -  D )  <  ( B  -  A )
)
3016, 24absltd 13315 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( ( abs `  ( C  -  D
) )  <  ( B  -  A )  <->  (
-u ( B  -  A )  <  ( C  -  D )  /\  ( C  -  D
)  <  ( B  -  A ) ) ) )
3122, 29, 30mpbir2and 921 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( abs `  ( C  -  D )
)  <  ( B  -  A ) )
3231ex 432 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) )  -> 
( abs `  ( C  -  D )
)  <  ( B  -  A ) ) )
336, 32syld 42 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e.  ( A [,) B
)  /\  D  e.  ( A [,) B ) )  ->  ( abs `  ( C  -  D
) )  <  ( B  -  A )
) )
3433imp 427 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,) B
)  /\  D  e.  ( A [,) B ) ) )  ->  ( abs `  ( C  -  D ) )  < 
( B  -  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 972    e. wcel 1840   class class class wbr 4392   ` cfv 5523  (class class class)co 6232   RRcr 9439   RR*cxr 9575    < clt 9576    <_ cle 9577    - cmin 9759   -ucneg 9760   [,)cico 11500   abscabs 13121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528  ax-cnex 9496  ax-resscn 9497  ax-1cn 9498  ax-icn 9499  ax-addcl 9500  ax-addrcl 9501  ax-mulcl 9502  ax-mulrcl 9503  ax-mulcom 9504  ax-addass 9505  ax-mulass 9506  ax-distr 9507  ax-i2m1 9508  ax-1ne0 9509  ax-1rid 9510  ax-rnegex 9511  ax-rrecex 9512  ax-cnre 9513  ax-pre-lttri 9514  ax-pre-lttrn 9515  ax-pre-ltadd 9516  ax-pre-mulgt0 9517  ax-pre-sup 9518
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 973  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-nel 2599  df-ral 2756  df-rex 2757  df-reu 2758  df-rmo 2759  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-pss 3427  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-tp 3974  df-op 3976  df-uni 4189  df-iun 4270  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4487  df-eprel 4731  df-id 4735  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-riota 6194  df-ov 6235  df-oprab 6236  df-mpt2 6237  df-om 6637  df-2nd 6737  df-recs 6997  df-rdg 7031  df-er 7266  df-en 7473  df-dom 7474  df-sdom 7475  df-sup 7853  df-pnf 9578  df-mnf 9579  df-xr 9580  df-ltxr 9581  df-le 9582  df-sub 9761  df-neg 9762  df-div 10166  df-nn 10495  df-2 10553  df-3 10554  df-n0 10755  df-z 10824  df-uz 11044  df-rp 11182  df-ico 11504  df-seq 12060  df-exp 12119  df-cj 12986  df-re 12987  df-im 12988  df-sqrt 13122  df-abs 13123
This theorem is referenced by:  irrapxlem2  35084
  Copyright terms: Public domain W3C validator