MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ico0 Structured version   Unicode version

Theorem ico0 11566
Description: An empty open interval of extended reals. (Contributed by FL, 30-May-2014.)
Assertion
Ref Expression
ico0  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,) B
)  =  (/)  <->  B  <_  A ) )

Proof of Theorem ico0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 icoval 11558 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A [,) B )  =  { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) } )
21eqeq1d 2464 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,) B
)  =  (/)  <->  { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/) ) )
3 df-ne 2659 . . . . . 6  |-  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =/=  (/)  <->  -.  { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/) )
4 rabn0 3800 . . . . . 6  |-  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =/=  (/)  <->  E. x  e.  RR*  ( A  <_  x  /\  x  <  B ) )
53, 4bitr3i 251 . . . . 5  |-  ( -. 
{ x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/)  <->  E. x  e.  RR*  ( A  <_  x  /\  x  <  B
) )
6 xrlelttr 11350 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  x  e.  RR*  /\  B  e. 
RR* )  ->  (
( A  <_  x  /\  x  <  B )  ->  A  <  B
) )
763com23 1197 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* )  ->  (
( A  <_  x  /\  x  <  B )  ->  A  <  B
) )
873expa 1191 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  RR* )  ->  ( ( A  <_  x  /\  x  <  B
)  ->  A  <  B ) )
98rexlimdva 2950 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <_  x  /\  x  <  B )  ->  A  <  B ) )
10 qbtwnxr 11390 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
11 qre 11178 . . . . . . . . . . . . 13  |-  ( x  e.  QQ  ->  x  e.  RR )
1211rexrd 9634 . . . . . . . . . . . 12  |-  ( x  e.  QQ  ->  x  e.  RR* )
1312a1i 11 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( x  e.  QQ  ->  x  e.  RR* )
)
14 simpr1 997 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  ->  A  e.  RR* )
15 simpl 457 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  ->  x  e.  RR* )
16 xrltle 11346 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  ( A  <  x  ->  A  <_  x ) )
1714, 15, 16syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( A  <  x  ->  A  <_  x )
)
1817anim1d 564 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( ( A  < 
x  /\  x  <  B )  ->  ( A  <_  x  /\  x  < 
B ) ) )
1913, 18anim12d 563 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( ( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  -> 
( x  e.  RR*  /\  ( A  <_  x  /\  x  <  B ) ) ) )
2019ex 434 . . . . . . . . . . . 12  |-  ( x  e.  RR*  ->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e.  RR*  /\  ( A  <_  x  /\  x  <  B ) ) ) ) )
2112, 20syl 16 . . . . . . . . . . 11  |-  ( x  e.  QQ  ->  (
( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  ->  (
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e.  RR*  /\  ( A  <_  x  /\  x  <  B ) ) ) ) )
2221adantr 465 . . . . . . . . . 10  |-  ( ( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( ( A  e.  RR*  /\  B  e. 
RR*  /\  A  <  B )  ->  ( (
x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e. 
RR*  /\  ( A  <_  x  /\  x  < 
B ) ) ) ) )
2322pm2.43b 50 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e.  RR*  /\  ( A  <_  x  /\  x  <  B ) ) ) )
2423reximdv2 2929 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  ( E. x  e.  QQ  ( A  <  x  /\  x  <  B )  ->  E. x  e.  RR*  ( A  <_  x  /\  x  <  B ) ) )
2510, 24mpd 15 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  RR*  ( A  <_  x  /\  x  <  B
) )
26253expia 1193 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  E. x  e.  RR*  ( A  <_  x  /\  x  <  B
) ) )
279, 26impbid 191 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <_  x  /\  x  <  B )  <->  A  <  B ) )
285, 27syl5bb 257 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/)  <->  A  <  B ) )
29 xrltnle 9644 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  <->  -.  B  <_  A ) )
3028, 29bitrd 253 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/)  <->  -.  B  <_  A ) )
3130con4bid 293 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) }  =  (/)  <->  B  <_  A ) )
322, 31bitrd 253 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,) B
)  =  (/)  <->  B  <_  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2657   E.wrex 2810   {crab 2813   (/)c0 3780   class class class wbr 4442  (class class class)co 6277   RR*cxr 9618    < clt 9619    <_ cle 9620   QQcq 11173   [,)cico 11522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560  ax-pre-sup 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-1st 6776  df-2nd 6777  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-sup 7892  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-div 10198  df-nn 10528  df-n0 10787  df-z 10856  df-uz 11074  df-q 11174  df-ico 11526
This theorem is referenced by:  icombl  21704  ioombl  21705  difioo  27249
  Copyright terms: Public domain W3C validator