MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccpnfhmeo Structured version   Unicode version

Theorem iccpnfhmeo 21180
Description: The defined bijection from  [ 0 ,  1 ] to  [ 0 , +oo ] is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
iccpnfhmeo.f  |-  F  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  =  1 , +oo , 
( x  /  (
1  -  x ) ) ) )
iccpnfhmeo.k  |-  K  =  ( (ordTop `  <_  )t  ( 0 [,] +oo )
)
Assertion
Ref Expression
iccpnfhmeo  |-  ( F 
Isom  <  ,  <  (
( 0 [,] 1
) ,  ( 0 [,] +oo ) )  /\  F  e.  ( II Homeo K ) )

Proof of Theorem iccpnfhmeo
Dummy variables  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 11603 . . . 4  |-  ( 0 [,] 1 )  C_  RR*
2 xrltso 11343 . . . 4  |-  <  Or  RR*
3 soss 4818 . . . 4  |-  ( ( 0 [,] 1 ) 
C_  RR*  ->  (  <  Or 
RR*  ->  <  Or  (
0 [,] 1 ) ) )
41, 2, 3mp2 9 . . 3  |-  <  Or  ( 0 [,] 1
)
5 iccssxr 11603 . . . . 5  |-  ( 0 [,] +oo )  C_  RR*
6 soss 4818 . . . . 5  |-  ( ( 0 [,] +oo )  C_ 
RR*  ->  (  <  Or  RR* 
->  <  Or  ( 0 [,] +oo ) ) )
75, 2, 6mp2 9 . . . 4  |-  <  Or  ( 0 [,] +oo )
8 sopo 4817 . . . 4  |-  (  < 
Or  ( 0 [,] +oo )  ->  <  Po  ( 0 [,] +oo ) )
97, 8ax-mp 5 . . 3  |-  <  Po  ( 0 [,] +oo )
10 iccpnfhmeo.f . . . . . 6  |-  F  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  =  1 , +oo , 
( x  /  (
1  -  x ) ) ) )
1110iccpnfcnv 21179 . . . . 5  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo )  /\  `' F  =  ( y  e.  ( 0 [,] +oo )  |->  if ( y  = +oo ,  1 ,  ( y  /  (
1  +  y ) ) ) ) )
1211simpli 458 . . . 4  |-  F :
( 0 [,] 1
)
-1-1-onto-> ( 0 [,] +oo )
13 f1ofo 5821 . . . 4  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo )  ->  F : ( 0 [,] 1 )
-onto-> ( 0 [,] +oo ) )
1412, 13ax-mp 5 . . 3  |-  F :
( 0 [,] 1
) -onto-> ( 0 [,] +oo )
15 0re 9592 . . . . . . . . . . . . 13  |-  0  e.  RR
16 1re 9591 . . . . . . . . . . . . 13  |-  1  e.  RR
1715, 16elicc2i 11586 . . . . . . . . . . . 12  |-  ( z  e.  ( 0 [,] 1 )  <->  ( z  e.  RR  /\  0  <_ 
z  /\  z  <_  1 ) )
1817simp1bi 1011 . . . . . . . . . . 11  |-  ( z  e.  ( 0 [,] 1 )  ->  z  e.  RR )
19183ad2ant1 1017 . . . . . . . . . 10  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
z  e.  RR )
2015, 16elicc2i 11586 . . . . . . . . . . . . 13  |-  ( w  e.  ( 0 [,] 1 )  <->  ( w  e.  RR  /\  0  <_  w  /\  w  <_  1
) )
2120simp1bi 1011 . . . . . . . . . . . 12  |-  ( w  e.  ( 0 [,] 1 )  ->  w  e.  RR )
22213ad2ant2 1018 . . . . . . . . . . 11  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  ->  w  e.  RR )
23 1red 9607 . . . . . . . . . . 11  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
1  e.  RR )
24 simp3 998 . . . . . . . . . . 11  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
z  <  w )
2520simp3bi 1013 . . . . . . . . . . . 12  |-  ( w  e.  ( 0 [,] 1 )  ->  w  <_  1 )
26253ad2ant2 1018 . . . . . . . . . . 11  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  ->  w  <_  1 )
2719, 22, 23, 24, 26ltletrd 9737 . . . . . . . . . 10  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
z  <  1 )
2819, 27gtned 9715 . . . . . . . . 9  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
1  =/=  z )
2928necomd 2738 . . . . . . . 8  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
z  =/=  1 )
30 ifnefalse 3951 . . . . . . . 8  |-  ( z  =/=  1  ->  if ( z  =  1 , +oo ,  ( z  /  ( 1  -  z ) ) )  =  ( z  /  ( 1  -  z ) ) )
3129, 30syl 16 . . . . . . 7  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  ->  if ( z  =  1 , +oo ,  ( z  /  ( 1  -  z ) ) )  =  ( z  /  ( 1  -  z ) ) )
32 breq2 4451 . . . . . . . 8  |-  ( +oo  =  if ( w  =  1 , +oo , 
( w  /  (
1  -  w ) ) )  ->  (
( z  /  (
1  -  z ) )  < +oo  <->  ( z  /  ( 1  -  z ) )  < 
if ( w  =  1 , +oo , 
( w  /  (
1  -  w ) ) ) ) )
33 breq2 4451 . . . . . . . 8  |-  ( ( w  /  ( 1  -  w ) )  =  if ( w  =  1 , +oo ,  ( w  / 
( 1  -  w
) ) )  -> 
( ( z  / 
( 1  -  z
) )  <  (
w  /  ( 1  -  w ) )  <-> 
( z  /  (
1  -  z ) )  <  if ( w  =  1 , +oo ,  ( w  /  ( 1  -  w ) ) ) ) )
34 resubcl 9879 . . . . . . . . . . . 12  |-  ( ( 1  e.  RR  /\  z  e.  RR )  ->  ( 1  -  z
)  e.  RR )
3516, 19, 34sylancr 663 . . . . . . . . . . 11  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( 1  -  z
)  e.  RR )
36 ax-1cn 9546 . . . . . . . . . . . . 13  |-  1  e.  CC
3719recnd 9618 . . . . . . . . . . . . 13  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
z  e.  CC )
38 subeq0 9841 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  z  e.  CC )  ->  ( ( 1  -  z )  =  0  <->  1  =  z ) )
3938necon3bid 2725 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  z  e.  CC )  ->  ( ( 1  -  z )  =/=  0  <->  1  =/=  z ) )
4036, 37, 39sylancr 663 . . . . . . . . . . . 12  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( ( 1  -  z )  =/=  0  <->  1  =/=  z ) )
4128, 40mpbird 232 . . . . . . . . . . 11  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( 1  -  z
)  =/=  0 )
4219, 35, 41redivcld 10368 . . . . . . . . . 10  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( z  /  (
1  -  z ) )  e.  RR )
43 ltpnf 11327 . . . . . . . . . 10  |-  ( ( z  /  ( 1  -  z ) )  e.  RR  ->  (
z  /  ( 1  -  z ) )  < +oo )
4442, 43syl 16 . . . . . . . . 9  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( z  /  (
1  -  z ) )  < +oo )
4544adantr 465 . . . . . . . 8  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  w  = 
1 )  ->  (
z  /  ( 1  -  z ) )  < +oo )
46 simpl3 1001 . . . . . . . . . 10  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  -.  w  =  1 )  -> 
z  <  w )
47 eqid 2467 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 0 [,) 1 )  |->  ( x  /  ( 1  -  x ) ) )  =  ( x  e.  ( 0 [,) 1
)  |->  ( x  / 
( 1  -  x
) ) )
48 eqid 2467 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
4947, 48icopnfhmeo 21178 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 0 [,) 1 )  |->  ( x  /  ( 1  -  x ) ) )  Isom  <  ,  <  ( ( 0 [,) 1
) ,  ( 0 [,) +oo ) )  /\  ( x  e.  ( 0 [,) 1
)  |->  ( x  / 
( 1  -  x
) ) )  e.  ( ( ( TopOpen ` fld )t  (
0 [,) 1 ) ) Homeo ( ( TopOpen ` fld )t  (
0 [,) +oo )
) ) )
5049simpli 458 . . . . . . . . . . . 12  |-  ( x  e.  ( 0 [,) 1 )  |->  ( x  /  ( 1  -  x ) ) ) 
Isom  <  ,  <  (
( 0 [,) 1
) ,  ( 0 [,) +oo ) )
5150a1i 11 . . . . . . . . . . 11  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  -.  w  =  1 )  -> 
( x  e.  ( 0 [,) 1 ) 
|->  ( x  /  (
1  -  x ) ) )  Isom  <  ,  <  ( ( 0 [,) 1 ) ,  ( 0 [,) +oo ) ) )
52 simp1 996 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
z  e.  ( 0 [,] 1 ) )
53 0xr 9636 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR*
5416rexri 9642 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR*
55 0le1 10072 . . . . . . . . . . . . . . . . . . 19  |-  0  <_  1
56 snunico 11643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  RR*  /\  1  e.  RR*  /\  0  <_ 
1 )  ->  (
( 0 [,) 1
)  u.  { 1 } )  =  ( 0 [,] 1 ) )
5753, 54, 55, 56mp3an 1324 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0 [,) 1 )  u.  { 1 } )  =  ( 0 [,] 1 )
5852, 57syl6eleqr 2566 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
z  e.  ( ( 0 [,) 1 )  u.  { 1 } ) )
59 elun 3645 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( ( 0 [,) 1 )  u. 
{ 1 } )  <-> 
( z  e.  ( 0 [,) 1 )  \/  z  e.  {
1 } ) )
6058, 59sylib 196 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( z  e.  ( 0 [,) 1 )  \/  z  e.  {
1 } ) )
6160ord 377 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( -.  z  e.  ( 0 [,) 1
)  ->  z  e.  { 1 } ) )
62 elsni 4052 . . . . . . . . . . . . . . 15  |-  ( z  e.  { 1 }  ->  z  =  1 )
6361, 62syl6 33 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( -.  z  e.  ( 0 [,) 1
)  ->  z  = 
1 ) )
6463necon1ad 2683 . . . . . . . . . . . . 13  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( z  =/=  1  ->  z  e.  ( 0 [,) 1 ) ) )
6529, 64mpd 15 . . . . . . . . . . . 12  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
z  e.  ( 0 [,) 1 ) )
6665adantr 465 . . . . . . . . . . 11  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  -.  w  =  1 )  -> 
z  e.  ( 0 [,) 1 ) )
67 simp2 997 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  ->  w  e.  ( 0 [,] 1 ) )
6867, 57syl6eleqr 2566 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  ->  w  e.  ( (
0 [,) 1 )  u.  { 1 } ) )
69 elun 3645 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ( ( 0 [,) 1 )  u. 
{ 1 } )  <-> 
( w  e.  ( 0 [,) 1 )  \/  w  e.  {
1 } ) )
7068, 69sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( w  e.  ( 0 [,) 1 )  \/  w  e.  {
1 } ) )
7170ord 377 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( -.  w  e.  ( 0 [,) 1
)  ->  w  e.  { 1 } ) )
72 elsni 4052 . . . . . . . . . . . . . 14  |-  ( w  e.  { 1 }  ->  w  =  1 )
7371, 72syl6 33 . . . . . . . . . . . . 13  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( -.  w  e.  ( 0 [,) 1
)  ->  w  = 
1 ) )
7473con1d 124 . . . . . . . . . . . 12  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( -.  w  =  1  ->  w  e.  ( 0 [,) 1
) ) )
7574imp 429 . . . . . . . . . . 11  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  -.  w  =  1 )  ->  w  e.  ( 0 [,) 1 ) )
76 isorel 6208 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( 0 [,) 1 ) 
|->  ( x  /  (
1  -  x ) ) )  Isom  <  ,  <  ( ( 0 [,) 1 ) ,  ( 0 [,) +oo ) )  /\  (
z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) ) )  ->  ( z  <  w  <->  ( ( x  e.  ( 0 [,) 1 )  |->  ( x  /  ( 1  -  x ) ) ) `
 z )  < 
( ( x  e.  ( 0 [,) 1
)  |->  ( x  / 
( 1  -  x
) ) ) `  w ) ) )
7751, 66, 75, 76syl12anc 1226 . . . . . . . . . 10  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  -.  w  =  1 )  -> 
( z  <  w  <->  ( ( x  e.  ( 0 [,) 1 ) 
|->  ( x  /  (
1  -  x ) ) ) `  z
)  <  ( (
x  e.  ( 0 [,) 1 )  |->  ( x  /  ( 1  -  x ) ) ) `  w ) ) )
7846, 77mpbid 210 . . . . . . . . 9  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  -.  w  =  1 )  -> 
( ( x  e.  ( 0 [,) 1
)  |->  ( x  / 
( 1  -  x
) ) ) `  z )  <  (
( x  e.  ( 0 [,) 1 ) 
|->  ( x  /  (
1  -  x ) ) ) `  w
) )
79 id 22 . . . . . . . . . . . 12  |-  ( x  =  z  ->  x  =  z )
80 oveq2 6290 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
1  -  x )  =  ( 1  -  z ) )
8179, 80oveq12d 6300 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
x  /  ( 1  -  x ) )  =  ( z  / 
( 1  -  z
) ) )
82 ovex 6307 . . . . . . . . . . 11  |-  ( z  /  ( 1  -  z ) )  e. 
_V
8381, 47, 82fvmpt 5948 . . . . . . . . . 10  |-  ( z  e.  ( 0 [,) 1 )  ->  (
( x  e.  ( 0 [,) 1 ) 
|->  ( x  /  (
1  -  x ) ) ) `  z
)  =  ( z  /  ( 1  -  z ) ) )
8466, 83syl 16 . . . . . . . . 9  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  -.  w  =  1 )  -> 
( ( x  e.  ( 0 [,) 1
)  |->  ( x  / 
( 1  -  x
) ) ) `  z )  =  ( z  /  ( 1  -  z ) ) )
85 id 22 . . . . . . . . . . . 12  |-  ( x  =  w  ->  x  =  w )
86 oveq2 6290 . . . . . . . . . . . 12  |-  ( x  =  w  ->  (
1  -  x )  =  ( 1  -  w ) )
8785, 86oveq12d 6300 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
x  /  ( 1  -  x ) )  =  ( w  / 
( 1  -  w
) ) )
88 ovex 6307 . . . . . . . . . . 11  |-  ( w  /  ( 1  -  w ) )  e. 
_V
8987, 47, 88fvmpt 5948 . . . . . . . . . 10  |-  ( w  e.  ( 0 [,) 1 )  ->  (
( x  e.  ( 0 [,) 1 ) 
|->  ( x  /  (
1  -  x ) ) ) `  w
)  =  ( w  /  ( 1  -  w ) ) )
9075, 89syl 16 . . . . . . . . 9  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  -.  w  =  1 )  -> 
( ( x  e.  ( 0 [,) 1
)  |->  ( x  / 
( 1  -  x
) ) ) `  w )  =  ( w  /  ( 1  -  w ) ) )
9178, 84, 903brtr3d 4476 . . . . . . . 8  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  -.  w  =  1 )  -> 
( z  /  (
1  -  z ) )  <  ( w  /  ( 1  -  w ) ) )
9232, 33, 45, 91ifbothda 3974 . . . . . . 7  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( z  /  (
1  -  z ) )  <  if ( w  =  1 , +oo ,  ( w  /  ( 1  -  w ) ) ) )
9331, 92eqbrtrd 4467 . . . . . 6  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  ->  if ( z  =  1 , +oo ,  ( z  /  ( 1  -  z ) ) )  <  if ( w  =  1 , +oo ,  ( w  /  ( 1  -  w ) ) ) )
94933expia 1198 . . . . 5  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 ) )  ->  ( z  < 
w  ->  if (
z  =  1 , +oo ,  ( z  /  ( 1  -  z ) ) )  <  if ( w  =  1 , +oo ,  ( w  / 
( 1  -  w
) ) ) ) )
95 eqeq1 2471 . . . . . . . 8  |-  ( x  =  z  ->  (
x  =  1  <->  z  =  1 ) )
9695, 81ifbieq2d 3964 . . . . . . 7  |-  ( x  =  z  ->  if ( x  =  1 , +oo ,  ( x  /  ( 1  -  x ) ) )  =  if ( z  =  1 , +oo ,  ( z  / 
( 1  -  z
) ) ) )
97 pnfex 11318 . . . . . . . 8  |- +oo  e.  _V
9897, 82ifex 4008 . . . . . . 7  |-  if ( z  =  1 , +oo ,  ( z  /  ( 1  -  z ) ) )  e.  _V
9996, 10, 98fvmpt 5948 . . . . . 6  |-  ( z  e.  ( 0 [,] 1 )  ->  ( F `  z )  =  if ( z  =  1 , +oo , 
( z  /  (
1  -  z ) ) ) )
100 eqeq1 2471 . . . . . . . 8  |-  ( x  =  w  ->  (
x  =  1  <->  w  =  1 ) )
101100, 87ifbieq2d 3964 . . . . . . 7  |-  ( x  =  w  ->  if ( x  =  1 , +oo ,  ( x  /  ( 1  -  x ) ) )  =  if ( w  =  1 , +oo ,  ( w  / 
( 1  -  w
) ) ) )
10297, 88ifex 4008 . . . . . . 7  |-  if ( w  =  1 , +oo ,  ( w  /  ( 1  -  w ) ) )  e.  _V
103101, 10, 102fvmpt 5948 . . . . . 6  |-  ( w  e.  ( 0 [,] 1 )  ->  ( F `  w )  =  if ( w  =  1 , +oo , 
( w  /  (
1  -  w ) ) ) )
10499, 103breqan12d 4462 . . . . 5  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 ) )  ->  ( ( F `
 z )  < 
( F `  w
)  <->  if ( z  =  1 , +oo , 
( z  /  (
1  -  z ) ) )  <  if ( w  =  1 , +oo ,  ( w  /  ( 1  -  w ) ) ) ) )
10594, 104sylibrd 234 . . . 4  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 ) )  ->  ( z  < 
w  ->  ( F `  z )  <  ( F `  w )
) )
106105rgen2a 2891 . . 3  |-  A. z  e.  ( 0 [,] 1
) A. w  e.  ( 0 [,] 1
) ( z  < 
w  ->  ( F `  z )  <  ( F `  w )
)
107 soisoi 6210 . . 3  |-  ( ( (  <  Or  (
0 [,] 1 )  /\  <  Po  (
0 [,] +oo )
)  /\  ( F : ( 0 [,] 1 ) -onto-> ( 0 [,] +oo )  /\  A. z  e.  ( 0 [,] 1 ) A. w  e.  ( 0 [,] 1 ) ( z  <  w  -> 
( F `  z
)  <  ( F `  w ) ) ) )  ->  F  Isom  <  ,  <  ( ( 0 [,] 1 ) ,  ( 0 [,] +oo ) ) )
1084, 9, 14, 106, 107mp4an 673 . 2  |-  F  Isom  <  ,  <  ( ( 0 [,] 1 ) ,  ( 0 [,] +oo ) )
109 letsr 15710 . . . . . 6  |-  <_  e.  TosetRel
110109elexi 3123 . . . . 5  |-  <_  e.  _V
111110inex1 4588 . . . 4  |-  (  <_  i^i  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )  e.  _V
112110inex1 4588 . . . 4  |-  (  <_  i^i  ( ( 0 [,] +oo )  X.  (
0 [,] +oo )
) )  e.  _V
113 leiso 12470 . . . . . . . 8  |-  ( ( ( 0 [,] 1
)  C_  RR*  /\  (
0 [,] +oo )  C_ 
RR* )  ->  ( F  Isom  <  ,  <  ( ( 0 [,] 1
) ,  ( 0 [,] +oo ) )  <-> 
F  Isom  <_  ,  <_  ( ( 0 [,] 1
) ,  ( 0 [,] +oo ) ) ) )
1141, 5, 113mp2an 672 . . . . . . 7  |-  ( F 
Isom  <  ,  <  (
( 0 [,] 1
) ,  ( 0 [,] +oo ) )  <-> 
F  Isom  <_  ,  <_  ( ( 0 [,] 1
) ,  ( 0 [,] +oo ) ) )
115108, 114mpbi 208 . . . . . 6  |-  F  Isom  <_  ,  <_  ( ( 0 [,] 1 ) ,  ( 0 [,] +oo ) )
116 isores1 6216 . . . . . 6  |-  ( F 
Isom  <_  ,  <_  (
( 0 [,] 1
) ,  ( 0 [,] +oo ) )  <-> 
F  Isom  (  <_  i^i  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ,  <_  ( ( 0 [,] 1
) ,  ( 0 [,] +oo ) ) )
117115, 116mpbi 208 . . . . 5  |-  F  Isom  (  <_  i^i  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ,  <_  ( (
0 [,] 1 ) ,  ( 0 [,] +oo ) )
118 isores2 6215 . . . . 5  |-  ( F 
Isom  (  <_  i^i  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) ) ,  <_  (
( 0 [,] 1
) ,  ( 0 [,] +oo ) )  <-> 
F  Isom  (  <_  i^i  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ,  (  <_  i^i  ( (
0 [,] +oo )  X.  ( 0 [,] +oo ) ) ) ( ( 0 [,] 1
) ,  ( 0 [,] +oo ) ) )
119117, 118mpbi 208 . . . 4  |-  F  Isom  (  <_  i^i  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ,  (  <_  i^i  ( ( 0 [,] +oo )  X.  (
0 [,] +oo )
) ) ( ( 0 [,] 1 ) ,  ( 0 [,] +oo ) )
120 tsrps 15704 . . . . . . . 8  |-  (  <_  e. 
TosetRel  ->  <_  e.  PosetRel )
121109, 120ax-mp 5 . . . . . . 7  |-  <_  e.  PosetRel
122 ledm 15707 . . . . . . . 8  |-  RR*  =  dom  <_
123122psssdm 15699 . . . . . . 7  |-  ( (  <_  e.  PosetRel  /\  (
0 [,] 1 ) 
C_  RR* )  ->  dom  (  <_  i^i  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )  =  ( 0 [,] 1 ) )
124121, 1, 123mp2an 672 . . . . . 6  |-  dom  (  <_  i^i  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )  =  ( 0 [,] 1
)
125124eqcomi 2480 . . . . 5  |-  ( 0 [,] 1 )  =  dom  (  <_  i^i  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
126122psssdm 15699 . . . . . . 7  |-  ( (  <_  e.  PosetRel  /\  (
0 [,] +oo )  C_ 
RR* )  ->  dom  (  <_  i^i  ( (
0 [,] +oo )  X.  ( 0 [,] +oo ) ) )  =  ( 0 [,] +oo ) )
127121, 5, 126mp2an 672 . . . . . 6  |-  dom  (  <_  i^i  ( ( 0 [,] +oo )  X.  ( 0 [,] +oo ) ) )  =  ( 0 [,] +oo )
128127eqcomi 2480 . . . . 5  |-  ( 0 [,] +oo )  =  dom  (  <_  i^i  ( ( 0 [,] +oo )  X.  (
0 [,] +oo )
) )
129125, 128ordthmeo 20038 . . . 4  |-  ( ( (  <_  i^i  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  e.  _V  /\  (  <_  i^i  ( (
0 [,] +oo )  X.  ( 0 [,] +oo ) ) )  e. 
_V  /\  F  Isom  (  <_  i^i  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ,  (  <_  i^i  ( ( 0 [,] +oo )  X.  (
0 [,] +oo )
) ) ( ( 0 [,] 1 ) ,  ( 0 [,] +oo ) ) )  ->  F  e.  ( (ordTop `  (  <_  i^i  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) ) ) Homeo (ordTop `  (  <_  i^i  ( (
0 [,] +oo )  X.  ( 0 [,] +oo ) ) ) ) ) )
130111, 112, 119, 129mp3an 1324 . . 3  |-  F  e.  ( (ordTop `  (  <_  i^i  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) ) )
Homeo (ordTop `  (  <_  i^i  ( ( 0 [,] +oo )  X.  (
0 [,] +oo )
) ) ) )
131 dfii5 21124 . . . 4  |-  II  =  (ordTop `  (  <_  i^i  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) )
132 iccpnfhmeo.k . . . . 5  |-  K  =  ( (ordTop `  <_  )t  ( 0 [,] +oo )
)
133 ordtresticc 19490 . . . . 5  |-  ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  =  (ordTop `  (  <_  i^i  (
( 0 [,] +oo )  X.  ( 0 [,] +oo ) ) ) )
134132, 133eqtri 2496 . . . 4  |-  K  =  (ordTop `  (  <_  i^i  ( ( 0 [,] +oo )  X.  (
0 [,] +oo )
) ) )
135131, 134oveq12i 6294 . . 3  |-  ( II
Homeo K )  =  ( (ordTop `  (  <_  i^i  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) Homeo (ordTop `  (  <_  i^i  (
( 0 [,] +oo )  X.  ( 0 [,] +oo ) ) ) ) )
136130, 135eleqtrri 2554 . 2  |-  F  e.  ( II Homeo K )
137108, 136pm3.2i 455 1  |-  ( F 
Isom  <  ,  <  (
( 0 [,] 1
) ,  ( 0 [,] +oo ) )  /\  F  e.  ( II Homeo K ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   _Vcvv 3113    u. cun 3474    i^i cin 3475    C_ wss 3476   ifcif 3939   {csn 4027   class class class wbr 4447    |-> cmpt 4505    Po wpo 4798    Or wor 4799    X. cxp 4997   `'ccnv 4998   dom cdm 4999   -onto->wfo 5584   -1-1-onto->wf1o 5585   ` cfv 5586    Isom wiso 5587  (class class class)co 6282   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491   +oocpnf 9621   RR*cxr 9623    < clt 9624    <_ cle 9625    - cmin 9801    / cdiv 10202   [,)cico 11527   [,]cicc 11528   ↾t crest 14672   TopOpenctopn 14673  ordTopcordt 14750   PosetRelcps 15681    TosetRel ctsr 15682  ℂfldccnfld 18191   Homeochmeo 19989   IIcii 21114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fi 7867  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ioc 11530  df-ico 11531  df-icc 11532  df-fz 11669  df-seq 12072  df-exp 12131  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-plusg 14564  df-mulr 14565  df-starv 14566  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-rest 14674  df-topn 14675  df-topgen 14695  df-ordt 14752  df-ps 15683  df-tsr 15684  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-cnfld 18192  df-top 19166  df-bases 19168  df-topon 19169  df-topsp 19170  df-cn 19494  df-hmeo 19991  df-xms 20558  df-ms 20559  df-ii 21116
This theorem is referenced by:  xrhmeo  21181  xrge0hmph  27550
  Copyright terms: Public domain W3C validator