MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccordt Structured version   Unicode version

Theorem iccordt 19581
Description: A closed interval is closed in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
iccordt  |-  ( A [,] B )  e.  ( Clsd `  (ordTop ` 
<_  ) )

Proof of Theorem iccordt
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6280 . 2  |-  ( A [,] B )  =  ( [,] `  <. A ,  B >. )
2 letsr 15726 . . . . . 6  |-  <_  e.  TosetRel
3 ledm 15723 . . . . . . 7  |-  RR*  =  dom  <_
43ordtcld3 19566 . . . . . 6  |-  ( (  <_  e.  TosetRel  /\  x  e.  RR*  /\  y  e. 
RR* )  ->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) }  e.  ( Clsd `  (ordTop ` 
<_  ) ) )
52, 4mp3an1 1310 . . . . 5  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) }  e.  ( Clsd `  (ordTop ` 
<_  ) ) )
65rgen2a 2868 . . . 4  |-  A. x  e.  RR*  A. y  e. 
RR*  { z  e.  RR*  |  ( x  <_  z  /\  z  <_  y ) }  e.  ( Clsd `  (ordTop `  <_  ) )
7 df-icc 11540 . . . . 5  |-  [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) } )
87fmpt2 6848 . . . 4  |-  ( A. x  e.  RR*  A. y  e.  RR*  { z  e. 
RR*  |  ( x  <_  z  /\  z  <_ 
y ) }  e.  ( Clsd `  (ordTop `  <_  ) )  <->  [,] : ( RR*  X. 
RR* ) --> ( Clsd `  (ordTop `  <_  ) ) )
96, 8mpbi 208 . . 3  |-  [,] :
( RR*  X.  RR* ) --> ( Clsd `  (ordTop `  <_  ) )
10 letop 19573 . . . 4  |-  (ordTop `  <_  )  e.  Top
11 0cld 19405 . . . 4  |-  ( (ordTop `  <_  )  e.  Top  -> 
(/)  e.  ( Clsd `  (ordTop `  <_  ) ) )
1210, 11ax-mp 5 . . 3  |-  (/)  e.  (
Clsd `  (ordTop `  <_  ) )
139, 12f0cli 6023 . 2  |-  ( [,] `  <. A ,  B >. )  e.  ( Clsd `  (ordTop `  <_  ) )
141, 13eqeltri 2525 1  |-  ( A [,] B )  e.  ( Clsd `  (ordTop ` 
<_  ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    e. wcel 1802   A.wral 2791   {crab 2795   (/)c0 3767   <.cop 4016   class class class wbr 4433    X. cxp 4983   -->wf 5570   ` cfv 5574  (class class class)co 6277   RR*cxr 9625    <_ cle 9627   [,]cicc 11536  ordTopcordt 14768    TosetRel ctsr 15698   Topctop 19261   Clsdccld 19383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-cnex 9546  ax-resscn 9547  ax-pre-lttri 9564  ax-pre-lttrn 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-iin 4314  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-recs 7040  df-rdg 7074  df-1o 7128  df-oadd 7132  df-er 7309  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-fi 7869  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-icc 11540  df-topgen 14713  df-ordt 14770  df-ps 15699  df-tsr 15700  df-top 19266  df-bases 19268  df-topon 19269  df-cld 19386
This theorem is referenced by:  lecldbas  19586
  Copyright terms: Public domain W3C validator