MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccmax Structured version   Visualization version   Unicode version

Theorem iccmax 11735
Description: The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014.)
Assertion
Ref Expression
iccmax  |-  ( -oo [,] +oo )  =  RR*

Proof of Theorem iccmax
StepHypRef Expression
1 mnfxr 11437 . . 3  |- -oo  e.  RR*
2 pnfxr 11435 . . 3  |- +oo  e.  RR*
3 iccval 11700 . . 3  |-  ( ( -oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( -oo [,] +oo )  =  { x  e.  RR*  |  ( -oo  <_  x  /\  x  <_ +oo ) } )
41, 2, 3mp2an 686 . 2  |-  ( -oo [,] +oo )  =  {
x  e.  RR*  |  ( -oo  <_  x  /\  x  <_ +oo ) }
5 rabid2 2954 . . 3  |-  ( RR*  =  { x  e.  RR*  |  ( -oo  <_  x  /\  x  <_ +oo ) } 
<-> 
A. x  e.  RR*  ( -oo  <_  x  /\  x  <_ +oo ) )
6 mnfle 11458 . . . 4  |-  ( x  e.  RR*  -> -oo  <_  x )
7 pnfge 11455 . . . 4  |-  ( x  e.  RR*  ->  x  <_ +oo )
86, 7jca 541 . . 3  |-  ( x  e.  RR*  ->  ( -oo  <_  x  /\  x  <_ +oo ) )
95, 8mprgbir 2771 . 2  |-  RR*  =  { x  e.  RR*  |  ( -oo  <_  x  /\  x  <_ +oo ) }
104, 9eqtr4i 2496 1  |-  ( -oo [,] +oo )  =  RR*
Colors of variables: wff setvar class
Syntax hints:    /\ wa 376    = wceq 1452    e. wcel 1904   {crab 2760   class class class wbr 4395  (class class class)co 6308   +oocpnf 9690   -oocmnf 9691   RR*cxr 9692    <_ cle 9694   [,]cicc 11663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-icc 11667
This theorem is referenced by:  leordtval2  20305  lecldbas  20312
  Copyright terms: Public domain W3C validator