Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccllyscon Structured version   Unicode version

Theorem iccllyscon 27139
Description: A closed interval is locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
iccllyscon  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( topGen `  ran  (,) )t  ( A [,] B
) )  e. Locally SCon )

Proof of Theorem iccllyscon
Dummy variables  a 
b  u  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 755 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  x  e.  ( topGen `  ran  (,) )
)
2 inss1 3570 . . . . . 6  |-  ( x  i^i  ( A [,] B ) )  C_  x
3 simprr 756 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  y  e.  ( x  i^i  ( A [,] B ) ) )
42, 3sseldi 3354 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  y  e.  x )
5 tg2 18570 . . . . 5  |-  ( ( x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  x )  ->  E. z  e.  ran  (,) ( y  e.  z  /\  z  C_  x ) )
61, 4, 5syl2anc 661 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  E. z  e.  ran  (,) ( y  e.  z  /\  z  C_  x ) )
7 ioof 11387 . . . . . . . 8  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
8 ffn 5559 . . . . . . . 8  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
9 ovelrn 6239 . . . . . . . 8  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( z  e. 
ran  (,)  <->  E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b ) ) )
107, 8, 9mp2b 10 . . . . . . 7  |-  ( z  e.  ran  (,)  <->  E. a  e.  RR*  E. b  e. 
RR*  z  =  ( a (,) b ) )
11 inss1 3570 . . . . . . . . . . . 12  |-  ( z  i^i  ( A [,] B ) )  C_  z
12 simprrr 764 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  -> 
z  C_  x )
1311, 12syl5ss 3367 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  -> 
( z  i^i  ( A [,] B ) ) 
C_  x )
14 simprrl 763 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  -> 
y  e.  z )
15 simprl 755 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  -> 
z  =  ( a (,) b ) )
1615ineq1d 3551 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  -> 
( z  i^i  ( A [,] B ) )  =  ( ( a (,) b )  i^i  ( A [,] B
) ) )
1716oveq2d 6107 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  -> 
( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  =  ( (
topGen `  ran  (,) )t  (
( a (,) b
)  i^i  ( A [,] B ) ) ) )
18 iooscon 27136 . . . . . . . . . . . . . . . 16  |-  ( (
topGen `  ran  (,) )t  (
a (,) b ) )  e. SCon
19 ioossre 11357 . . . . . . . . . . . . . . . . 17  |-  ( a (,) b )  C_  RR
20 eqid 2443 . . . . . . . . . . . . . . . . . . 19  |-  ( (
topGen `  ran  (,) )t  (
a (,) b ) )  =  ( (
topGen `  ran  (,) )t  (
a (,) b ) )
2120rescon 27135 . . . . . . . . . . . . . . . . . 18  |-  ( ( a (,) b ) 
C_  RR  ->  ( ( ( topGen `  ran  (,) )t  (
a (,) b ) )  e. SCon  <->  ( ( topGen `
 ran  (,) )t  (
a (,) b ) )  e.  Con )
)
22 reconn 20405 . . . . . . . . . . . . . . . . . 18  |-  ( ( a (,) b ) 
C_  RR  ->  ( ( ( topGen `  ran  (,) )t  (
a (,) b ) )  e.  Con  <->  A. u  e.  ( a (,) b
) A. v  e.  ( a (,) b
) ( u [,] v )  C_  (
a (,) b ) ) )
2321, 22bitrd 253 . . . . . . . . . . . . . . . . 17  |-  ( ( a (,) b ) 
C_  RR  ->  ( ( ( topGen `  ran  (,) )t  (
a (,) b ) )  e. SCon  <->  A. u  e.  ( a (,) b
) A. v  e.  ( a (,) b
) ( u [,] v )  C_  (
a (,) b ) ) )
2419, 23ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( ( topGen `  ran  (,) )t  (
a (,) b ) )  e. SCon  <->  A. u  e.  ( a (,) b
) A. v  e.  ( a (,) b
) ( u [,] v )  C_  (
a (,) b ) )
2518, 24mpbi 208 . . . . . . . . . . . . . . 15  |-  A. u  e.  ( a (,) b
) A. v  e.  ( a (,) b
) ( u [,] v )  C_  (
a (,) b )
26 inss1 3570 . . . . . . . . . . . . . . . 16  |-  ( ( a (,) b )  i^i  ( A [,] B ) )  C_  ( a (,) b
)
27 ssralv 3416 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  ( a (,) b
)  ->  ( A. v  e.  ( a (,) b ) ( u [,] v )  C_  ( a (,) b
)  ->  A. v  e.  ( ( a (,) b )  i^i  ( A [,] B ) ) ( u [,] v
)  C_  ( a (,) b ) ) )
2827ralimdv 2795 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  ( a (,) b
)  ->  ( A. u  e.  ( a (,) b ) A. v  e.  ( a (,) b
) ( u [,] v )  C_  (
a (,) b )  ->  A. u  e.  ( a (,) b ) A. v  e.  ( ( a (,) b
)  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( a (,) b ) ) )
29 ssralv 3416 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  ( a (,) b
)  ->  ( A. u  e.  ( a (,) b ) A. v  e.  ( ( a (,) b )  i^i  ( A [,] B ) ) ( u [,] v
)  C_  ( a (,) b )  ->  A. u  e.  ( ( a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( ( a (,) b
)  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( a (,) b ) ) )
3028, 29syld 44 . . . . . . . . . . . . . . . 16  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  ( a (,) b
)  ->  ( A. u  e.  ( a (,) b ) A. v  e.  ( a (,) b
) ( u [,] v )  C_  (
a (,) b )  ->  A. u  e.  ( ( a (,) b
)  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( a (,) b ) ) )
3126, 30ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( A. u  e.  ( a (,) b ) A. v  e.  ( a (,) b
) ( u [,] v )  C_  (
a (,) b )  ->  A. u  e.  ( ( a (,) b
)  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( a (,) b ) )
3225, 31mp1i 12 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  ->  A. u  e.  (
( a (,) b
)  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( a (,) b ) )
33 inss2 3571 . . . . . . . . . . . . . . 15  |-  ( ( a (,) b )  i^i  ( A [,] B ) )  C_  ( A [,] B )
34 iccconn 20407 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( topGen `  ran  (,) )t  ( A [,] B
) )  e.  Con )
35 iccssre 11377 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
36 reconn 20405 . . . . . . . . . . . . . . . . . 18  |-  ( ( A [,] B ) 
C_  RR  ->  ( ( ( topGen `  ran  (,) )t  ( A [,] B ) )  e.  Con  <->  A. u  e.  ( A [,] B
) A. v  e.  ( A [,] B
) ( u [,] v )  C_  ( A [,] B ) ) )
3735, 36syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( topGen ` 
ran  (,) )t  ( A [,] B ) )  e. 
Con 
<-> 
A. u  e.  ( A [,] B ) A. v  e.  ( A [,] B ) ( u [,] v
)  C_  ( A [,] B ) ) )
3834, 37mpbid 210 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. u  e.  ( A [,] B ) A. v  e.  ( A [,] B ) ( u [,] v
)  C_  ( A [,] B ) )
3938ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  ->  A. u  e.  ( A [,] B ) A. v  e.  ( A [,] B ) ( u [,] v )  C_  ( A [,] B ) )
40 ssralv 3416 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  ( A [,] B )  ->  ( A. v  e.  ( A [,] B
) ( u [,] v )  C_  ( A [,] B )  ->  A. v  e.  (
( a (,) b
)  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( A [,] B ) ) )
4140ralimdv 2795 . . . . . . . . . . . . . . . 16  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  ( A [,] B )  ->  ( A. u  e.  ( A [,] B
) A. v  e.  ( A [,] B
) ( u [,] v )  C_  ( A [,] B )  ->  A. u  e.  ( A [,] B ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( A [,] B ) ) )
42 ssralv 3416 . . . . . . . . . . . . . . . 16  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  ( A [,] B )  ->  ( A. u  e.  ( A [,] B
) A. v  e.  ( ( a (,) b )  i^i  ( A [,] B ) ) ( u [,] v
)  C_  ( A [,] B )  ->  A. u  e.  ( ( a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( ( a (,) b
)  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( A [,] B ) ) )
4341, 42syld 44 . . . . . . . . . . . . . . 15  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  ( A [,] B )  ->  ( A. u  e.  ( A [,] B
) A. v  e.  ( A [,] B
) ( u [,] v )  C_  ( A [,] B )  ->  A. u  e.  (
( a (,) b
)  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( A [,] B ) ) )
4433, 39, 43mpsyl 63 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  ->  A. u  e.  (
( a (,) b
)  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( A [,] B ) )
45 ssin 3572 . . . . . . . . . . . . . . . 16  |-  ( ( ( u [,] v
)  C_  ( a (,) b )  /\  (
u [,] v ) 
C_  ( A [,] B ) )  <->  ( u [,] v )  C_  (
( a (,) b
)  i^i  ( A [,] B ) ) )
46452ralbii 2741 . . . . . . . . . . . . . . 15  |-  ( A. u  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( ( u [,] v
)  C_  ( a (,) b )  /\  (
u [,] v ) 
C_  ( A [,] B ) )  <->  A. u  e.  ( ( a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( ( a (,) b
)  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( ( a (,) b )  i^i  ( A [,] B
) ) )
47 r19.26-2 2850 . . . . . . . . . . . . . . 15  |-  ( A. u  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( ( u [,] v
)  C_  ( a (,) b )  /\  (
u [,] v ) 
C_  ( A [,] B ) )  <->  ( A. u  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( a (,) b )  /\  A. u  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( A [,] B ) ) )
4846, 47bitr3i 251 . . . . . . . . . . . . . 14  |-  ( A. u  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( ( a (,) b )  i^i  ( A [,] B
) )  <->  ( A. u  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( a (,) b )  /\  A. u  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( A [,] B ) ) )
4932, 44, 48sylanbrc 664 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  ->  A. u  e.  (
( a (,) b
)  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( ( a (,) b )  i^i  ( A [,] B
) ) )
5026, 19sstri 3365 . . . . . . . . . . . . . 14  |-  ( ( a (,) b )  i^i  ( A [,] B ) )  C_  RR
51 eqid 2443 . . . . . . . . . . . . . . . 16  |-  ( (
topGen `  ran  (,) )t  (
( a (,) b
)  i^i  ( A [,] B ) ) )  =  ( ( topGen ` 
ran  (,) )t  ( ( a (,) b )  i^i  ( A [,] B
) ) )
5251rescon 27135 . . . . . . . . . . . . . . 15  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  RR  ->  ( ( (
topGen `  ran  (,) )t  (
( a (,) b
)  i^i  ( A [,] B ) ) )  e. SCon 
<->  ( ( topGen `  ran  (,) )t  ( ( a (,) b )  i^i  ( A [,] B ) ) )  e.  Con )
)
53 reconn 20405 . . . . . . . . . . . . . . 15  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  RR  ->  ( ( (
topGen `  ran  (,) )t  (
( a (,) b
)  i^i  ( A [,] B ) ) )  e.  Con  <->  A. u  e.  ( ( a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( ( a (,) b
)  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( ( a (,) b )  i^i  ( A [,] B
) ) ) )
5452, 53bitrd 253 . . . . . . . . . . . . . 14  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  RR  ->  ( ( (
topGen `  ran  (,) )t  (
( a (,) b
)  i^i  ( A [,] B ) ) )  e. SCon 
<-> 
A. u  e.  ( ( a (,) b
)  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( ( a (,) b )  i^i  ( A [,] B
) ) ) )
5550, 54ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( ( topGen `  ran  (,) )t  (
( a (,) b
)  i^i  ( A [,] B ) ) )  e. SCon 
<-> 
A. u  e.  ( ( a (,) b
)  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( ( a (,) b )  i^i  ( A [,] B
) ) )
5649, 55sylibr 212 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  -> 
( ( topGen `  ran  (,) )t  ( ( a (,) b )  i^i  ( A [,] B ) ) )  e. SCon )
5717, 56eqeltrd 2517 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  -> 
( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon )
5813, 14, 573jca 1168 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  -> 
( ( z  i^i  ( A [,] B
) )  C_  x  /\  y  e.  z  /\  ( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon ) )
5958exp32 605 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  ( z  =  ( a (,) b )  ->  (
( y  e.  z  /\  z  C_  x
)  ->  ( (
z  i^i  ( A [,] B ) )  C_  x  /\  y  e.  z  /\  ( ( topGen ` 
ran  (,) )t  ( z  i^i  ( A [,] B
) ) )  e. SCon
) ) ) )
6059rexlimdvw 2844 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  ( E. b  e.  RR*  z  =  ( a (,) b
)  ->  ( (
y  e.  z  /\  z  C_  x )  -> 
( ( z  i^i  ( A [,] B
) )  C_  x  /\  y  e.  z  /\  ( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon ) ) ) )
6160rexlimdvw 2844 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  ( E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b )  ->  ( ( y  e.  z  /\  z  C_  x )  ->  (
( z  i^i  ( A [,] B ) ) 
C_  x  /\  y  e.  z  /\  (
( topGen `  ran  (,) )t  (
z  i^i  ( A [,] B ) ) )  e. SCon ) ) ) )
6210, 61syl5bi 217 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  ( z  e.  ran  (,)  ->  ( ( y  e.  z  /\  z  C_  x )  -> 
( ( z  i^i  ( A [,] B
) )  C_  x  /\  y  e.  z  /\  ( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon ) ) ) )
6362reximdvai 2826 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  ( E. z  e.  ran  (,) (
y  e.  z  /\  z  C_  x )  ->  E. z  e.  ran  (,) ( ( z  i^i  ( A [,] B
) )  C_  x  /\  y  e.  z  /\  ( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon ) ) )
64 retopbas 20339 . . . . . 6  |-  ran  (,)  e. 
TopBases
65 bastg 18571 . . . . . 6  |-  ( ran 
(,)  e.  TopBases  ->  ran  (,)  C_  ( topGen `  ran  (,) )
)
66 ssrexv 3417 . . . . . 6  |-  ( ran 
(,)  C_  ( topGen `  ran  (,) )  ->  ( E. z  e.  ran  (,) (
( z  i^i  ( A [,] B ) ) 
C_  x  /\  y  e.  z  /\  (
( topGen `  ran  (,) )t  (
z  i^i  ( A [,] B ) ) )  e. SCon )  ->  E. z  e.  ( topGen `  ran  (,) )
( ( z  i^i  ( A [,] B
) )  C_  x  /\  y  e.  z  /\  ( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon ) ) )
6764, 65, 66mp2b 10 . . . . 5  |-  ( E. z  e.  ran  (,) ( ( z  i^i  ( A [,] B
) )  C_  x  /\  y  e.  z  /\  ( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon )  ->  E. z  e.  ( topGen `
 ran  (,) )
( ( z  i^i  ( A [,] B
) )  C_  x  /\  y  e.  z  /\  ( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon ) )
6863, 67syl6 33 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  ( E. z  e.  ran  (,) (
y  e.  z  /\  z  C_  x )  ->  E. z  e.  ( topGen `
 ran  (,) )
( ( z  i^i  ( A [,] B
) )  C_  x  /\  y  e.  z  /\  ( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon ) ) )
696, 68mpd 15 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  E. z  e.  ( topGen `  ran  (,) )
( ( z  i^i  ( A [,] B
) )  C_  x  /\  y  e.  z  /\  ( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon ) )
7069ralrimivva 2808 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. x  e.  (
topGen `  ran  (,) ) A. y  e.  (
x  i^i  ( A [,] B ) ) E. z  e.  ( topGen ` 
ran  (,) ) ( ( z  i^i  ( A [,] B ) ) 
C_  x  /\  y  e.  z  /\  (
( topGen `  ran  (,) )t  (
z  i^i  ( A [,] B ) ) )  e. SCon ) )
71 retop 20340 . . 3  |-  ( topGen ` 
ran  (,) )  e.  Top
72 ovex 6116 . . 3  |-  ( A [,] B )  e. 
_V
73 subislly 19085 . . 3  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( A [,] B )  e. 
_V )  ->  (
( ( topGen `  ran  (,) )t  ( A [,] B
) )  e. Locally SCon  <->  A. x  e.  ( topGen `  ran  (,) ) A. y  e.  (
x  i^i  ( A [,] B ) ) E. z  e.  ( topGen ` 
ran  (,) ) ( ( z  i^i  ( A [,] B ) ) 
C_  x  /\  y  e.  z  /\  (
( topGen `  ran  (,) )t  (
z  i^i  ( A [,] B ) ) )  e. SCon ) ) )
7471, 72, 73mp2an 672 . 2  |-  ( ( ( topGen `  ran  (,) )t  ( A [,] B ) )  e. Locally SCon 
<-> 
A. x  e.  (
topGen `  ran  (,) ) A. y  e.  (
x  i^i  ( A [,] B ) ) E. z  e.  ( topGen ` 
ran  (,) ) ( ( z  i^i  ( A [,] B ) ) 
C_  x  /\  y  e.  z  /\  (
( topGen `  ran  (,) )t  (
z  i^i  ( A [,] B ) ) )  e. SCon ) )
7570, 74sylibr 212 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( topGen `  ran  (,) )t  ( A [,] B
) )  e. Locally SCon )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2715   E.wrex 2716   _Vcvv 2972    i^i cin 3327    C_ wss 3328   ~Pcpw 3860    X. cxp 4838   ran crn 4841    Fn wfn 5413   -->wf 5414   ` cfv 5418  (class class class)co 6091   RRcr 9281   RR*cxr 9417   (,)cioo 11300   [,]cicc 11303   ↾t crest 14359   topGenctg 14376   Topctop 18498   TopBasesctb 18502   Conccon 19015  Locally clly 19068  SConcscon 27109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360  ax-addf 9361  ax-mulf 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-of 6320  df-om 6477  df-1st 6577  df-2nd 6578  df-supp 6691  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-map 7216  df-ixp 7264  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fsupp 7621  df-fi 7661  df-sup 7691  df-oi 7724  df-card 8109  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-q 10954  df-rp 10992  df-xneg 11089  df-xadd 11090  df-xmul 11091  df-ioo 11304  df-ico 11306  df-icc 11307  df-fz 11438  df-fzo 11549  df-seq 11807  df-exp 11866  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-starv 14253  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-hom 14262  df-cco 14263  df-rest 14361  df-topn 14362  df-0g 14380  df-gsum 14381  df-topgen 14382  df-pt 14383  df-prds 14386  df-xrs 14440  df-qtop 14445  df-imas 14446  df-xps 14448  df-mre 14524  df-mrc 14525  df-acs 14527  df-mnd 15415  df-submnd 15465  df-mulg 15548  df-cntz 15835  df-cmn 16279  df-psmet 17809  df-xmet 17810  df-met 17811  df-bl 17812  df-mopn 17813  df-cnfld 17819  df-top 18503  df-bases 18505  df-topon 18506  df-topsp 18507  df-cld 18623  df-cn 18831  df-cnp 18832  df-con 19016  df-lly 19070  df-tx 19135  df-hmeo 19328  df-xms 19895  df-ms 19896  df-tms 19897  df-ii 20453  df-htpy 20542  df-phtpy 20543  df-phtpc 20564  df-pcon 27110  df-scon 27111
This theorem is referenced by:  iillyscon  27142
  Copyright terms: Public domain W3C validator