MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icchmeo Structured version   Unicode version

Theorem icchmeo 21204
Description: The natural bijection from  [ 0 ,  1 ] to an arbitrary nontrivial closed interval  [ A ,  B ] is a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
icchmeo.j  |-  J  =  ( TopOpen ` fld )
icchmeo.f  |-  F  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( ( x  x.  B )  +  ( ( 1  -  x
)  x.  A ) ) )
Assertion
Ref Expression
icchmeo  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  F  e.  ( II Homeo ( Jt  ( A [,] B ) ) ) )
Distinct variable groups:    x, A    x, B    x, J
Allowed substitution hint:    F( x)

Proof of Theorem icchmeo
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 icchmeo.f . . . 4  |-  F  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( ( x  x.  B )  +  ( ( 1  -  x
)  x.  A ) ) )
2 iitopon 21146 . . . . . 6  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
32a1i 11 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  II  e.  (TopOn `  ( 0 [,] 1 ) ) )
4 icchmeo.j . . . . . . . . . 10  |-  J  =  ( TopOpen ` fld )
54dfii3 21150 . . . . . . . . 9  |-  II  =  ( Jt  ( 0 [,] 1 ) )
65oveq2i 6295 . . . . . . . 8  |-  ( II 
Cn  II )  =  ( II  Cn  ( Jt  ( 0 [,] 1
) ) )
74cnfldtop 21054 . . . . . . . . 9  |-  J  e. 
Top
8 cnrest2r 19582 . . . . . . . . 9  |-  ( J  e.  Top  ->  (
II  Cn  ( Jt  (
0 [,] 1 ) ) )  C_  (
II  Cn  J )
)
97, 8ax-mp 5 . . . . . . . 8  |-  ( II 
Cn  ( Jt  ( 0 [,] 1 ) ) )  C_  ( II  Cn  J )
106, 9eqsstri 3534 . . . . . . 7  |-  ( II 
Cn  II )  C_  ( II  Cn  J
)
113cnmptid 19925 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  x )  e.  ( II 
Cn  II ) )
1210, 11sseldi 3502 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  x )  e.  ( II 
Cn  J ) )
134cnfldtopon 21053 . . . . . . . 8  |-  J  e.  (TopOn `  CC )
1413a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  J  e.  (TopOn `  CC )
)
15 simp2 997 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  B  e.  RR )
1615recnd 9622 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  B  e.  CC )
173, 14, 16cnmptc 19926 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  B )  e.  ( II 
Cn  J ) )
184mulcn 21134 . . . . . . 7  |-  x.  e.  ( ( J  tX  J )  Cn  J
)
1918a1i 11 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  x.  e.  ( ( J  tX  J )  Cn  J
) )
203, 12, 17, 19cnmpt12f 19930 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  ( x  x.  B ) )  e.  ( II 
Cn  J ) )
21 1cnd 9612 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  1  e.  CC )
223, 14, 21cnmptc 19926 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  1 )  e.  ( II 
Cn  J ) )
234subcn 21133 . . . . . . . 8  |-  -  e.  ( ( J  tX  J )  Cn  J
)
2423a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  -  e.  ( ( J  tX  J )  Cn  J
) )
253, 22, 12, 24cnmpt12f 19930 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  ( 1  -  x ) )  e.  ( II 
Cn  J ) )
26 simp1 996 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  A  e.  RR )
2726recnd 9622 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  A  e.  CC )
283, 14, 27cnmptc 19926 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  A )  e.  ( II 
Cn  J ) )
293, 25, 28, 19cnmpt12f 19930 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  ( ( 1  -  x
)  x.  A ) )  e.  ( II 
Cn  J ) )
304addcn 21132 . . . . . 6  |-  +  e.  ( ( J  tX  J )  Cn  J
)
3130a1i 11 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  +  e.  ( ( J  tX  J )  Cn  J
) )
323, 20, 29, 31cnmpt12f 19930 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  ( ( x  x.  B
)  +  ( ( 1  -  x )  x.  A ) ) )  e.  ( II 
Cn  J ) )
331, 32syl5eqel 2559 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  F  e.  ( II  Cn  J
) )
341iccf1o 11664 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B
)  /\  `' F  =  ( y  e.  ( A [,] B
)  |->  ( ( y  -  A )  / 
( B  -  A
) ) ) ) )
3534simpld 459 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B
) )
36 f1of 5816 . . . . 5  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B
)  ->  F :
( 0 [,] 1
) --> ( A [,] B ) )
37 frn 5737 . . . . 5  |-  ( F : ( 0 [,] 1 ) --> ( A [,] B )  ->  ran  F  C_  ( A [,] B ) )
3835, 36, 373syl 20 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ran  F 
C_  ( A [,] B ) )
39 iccssre 11606 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
40393adant3 1016 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( A [,] B )  C_  RR )
41 ax-resscn 9549 . . . . 5  |-  RR  C_  CC
4240, 41syl6ss 3516 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( A [,] B )  C_  CC )
43 cnrest2 19581 . . . 4  |-  ( ( J  e.  (TopOn `  CC )  /\  ran  F  C_  ( A [,] B
)  /\  ( A [,] B )  C_  CC )  ->  ( F  e.  ( II  Cn  J
)  <->  F  e.  (
II  Cn  ( Jt  ( A [,] B ) ) ) ) )
4414, 38, 42, 43syl3anc 1228 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( F  e.  ( II  Cn  J )  <->  F  e.  ( II  Cn  ( Jt  ( A [,] B ) ) ) ) )
4533, 44mpbid 210 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  F  e.  ( II  Cn  ( Jt  ( A [,] B ) ) ) )
4634simprd 463 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  `' F  =  ( y  e.  ( A [,] B
)  |->  ( ( y  -  A )  / 
( B  -  A
) ) ) )
47 resttopon 19456 . . . . . . 7  |-  ( ( J  e.  (TopOn `  CC )  /\  ( A [,] B )  C_  CC )  ->  ( Jt  ( A [,] B ) )  e.  (TopOn `  ( A [,] B ) ) )
4813, 42, 47sylancr 663 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( Jt  ( A [,] B ) )  e.  (TopOn `  ( A [,] B ) ) )
49 cnrest2r 19582 . . . . . . . . 9  |-  ( J  e.  Top  ->  (
( Jt  ( A [,] B ) )  Cn  ( Jt  ( A [,] B ) ) ) 
C_  ( ( Jt  ( A [,] B ) )  Cn  J ) )
507, 49ax-mp 5 . . . . . . . 8  |-  ( ( Jt  ( A [,] B
) )  Cn  ( Jt  ( A [,] B ) ) )  C_  (
( Jt  ( A [,] B ) )  Cn  J )
5148cnmptid 19925 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
y  e.  ( A [,] B )  |->  y )  e.  ( ( Jt  ( A [,] B
) )  Cn  ( Jt  ( A [,] B ) ) ) )
5250, 51sseldi 3502 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
y  e.  ( A [,] B )  |->  y )  e.  ( ( Jt  ( A [,] B
) )  Cn  J
) )
5348, 14, 27cnmptc 19926 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
y  e.  ( A [,] B )  |->  A )  e.  ( ( Jt  ( A [,] B
) )  Cn  J
) )
5448, 52, 53, 24cnmpt12f 19930 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
y  e.  ( A [,] B )  |->  ( y  -  A ) )  e.  ( ( Jt  ( A [,] B
) )  Cn  J
) )
55 difrp 11253 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( B  -  A )  e.  RR+ ) )
5655biimp3a 1328 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  RR+ )
5756rpcnd 11258 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  CC )
5856rpne0d 11261 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  =/=  0 )
594divccn 21140 . . . . . . 7  |-  ( ( ( B  -  A
)  e.  CC  /\  ( B  -  A
)  =/=  0 )  ->  ( x  e.  CC  |->  ( x  / 
( B  -  A
) ) )  e.  ( J  Cn  J
) )
6057, 58, 59syl2anc 661 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  CC  |->  ( x  /  ( B  -  A ) ) )  e.  ( J  Cn  J ) )
61 oveq1 6291 . . . . . 6  |-  ( x  =  ( y  -  A )  ->  (
x  /  ( B  -  A ) )  =  ( ( y  -  A )  / 
( B  -  A
) ) )
6248, 54, 14, 60, 61cnmpt11 19927 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
y  e.  ( A [,] B )  |->  ( ( y  -  A
)  /  ( B  -  A ) ) )  e.  ( ( Jt  ( A [,] B
) )  Cn  J
) )
6346, 62eqeltrd 2555 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  `' F  e.  ( ( Jt  ( A [,] B ) )  Cn  J ) )
64 dfdm4 5195 . . . . . . 7  |-  dom  F  =  ran  `' F
6564eqimss2i 3559 . . . . . 6  |-  ran  `' F  C_  dom  F
66 f1odm 5820 . . . . . . 7  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B
)  ->  dom  F  =  ( 0 [,] 1
) )
6735, 66syl 16 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  dom  F  =  ( 0 [,] 1 ) )
6865, 67syl5sseq 3552 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ran  `' F  C_  ( 0 [,] 1 ) )
69 unitssre 11667 . . . . . . 7  |-  ( 0 [,] 1 )  C_  RR
7069a1i 11 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
0 [,] 1 ) 
C_  RR )
7170, 41syl6ss 3516 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
0 [,] 1 ) 
C_  CC )
72 cnrest2 19581 . . . . 5  |-  ( ( J  e.  (TopOn `  CC )  /\  ran  `' F  C_  ( 0 [,] 1 )  /\  (
0 [,] 1 ) 
C_  CC )  -> 
( `' F  e.  ( ( Jt  ( A [,] B ) )  Cn  J )  <->  `' F  e.  ( ( Jt  ( A [,] B ) )  Cn  ( Jt  ( 0 [,] 1 ) ) ) ) )
7314, 68, 71, 72syl3anc 1228 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( `' F  e.  (
( Jt  ( A [,] B ) )  Cn  J )  <->  `' F  e.  ( ( Jt  ( A [,] B ) )  Cn  ( Jt  ( 0 [,] 1 ) ) ) ) )
7463, 73mpbid 210 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  `' F  e.  ( ( Jt  ( A [,] B ) )  Cn  ( Jt  ( 0 [,] 1 ) ) ) )
755oveq2i 6295 . . 3  |-  ( ( Jt  ( A [,] B
) )  Cn  II )  =  ( ( Jt  ( A [,] B ) )  Cn  ( Jt  ( 0 [,] 1 ) ) )
7674, 75syl6eleqr 2566 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  `' F  e.  ( ( Jt  ( A [,] B ) )  Cn  II ) )
77 ishmeo 20023 . 2  |-  ( F  e.  ( II Homeo ( Jt  ( A [,] B
) ) )  <->  ( F  e.  ( II  Cn  ( Jt  ( A [,] B ) ) )  /\  `' F  e.  ( ( Jt  ( A [,] B ) )  Cn  II ) ) )
7845, 76, 77sylanbrc 664 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  F  e.  ( II Homeo ( Jt  ( A [,] B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662    C_ wss 3476   class class class wbr 4447    |-> cmpt 4505   `'ccnv 4998   dom cdm 4999   ran crn 5000   -->wf 5584   -1-1-onto->wf1o 5587   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495    x. cmul 9497    < clt 9628    - cmin 9805    / cdiv 10206   RR+crp 11220   [,]cicc 11532   ↾t crest 14676   TopOpenctopn 14677  ℂfldccnfld 18219   Topctop 19189  TopOnctopon 19190    Cn ccn 19519    tX ctx 19824   Homeochmeo 20017   IIcii 21142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-icc 11536  df-fz 11673  df-fzo 11793  df-seq 12076  df-exp 12135  df-hash 12374  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cn 19522  df-cnp 19523  df-tx 19826  df-hmeo 20019  df-xms 20586  df-ms 20587  df-tms 20588  df-ii 21144
This theorem is referenced by:  xrhmph  21210
  Copyright terms: Public domain W3C validator