MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccf1o Structured version   Unicode version

Theorem iccf1o 11660
Description: Describe a bijection from  [ 0 ,  1 ] to an arbitrary nontrivial closed interval  [ A ,  B ]. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
iccf1o.1  |-  F  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( ( x  x.  B )  +  ( ( 1  -  x
)  x.  A ) ) )
Assertion
Ref Expression
iccf1o  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B
)  /\  `' F  =  ( y  e.  ( A [,] B
)  |->  ( ( y  -  A )  / 
( B  -  A
) ) ) ) )
Distinct variable groups:    x, y, A    x, B, y
Allowed substitution hints:    F( x, y)

Proof of Theorem iccf1o
StepHypRef Expression
1 iccf1o.1 . 2  |-  F  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( ( x  x.  B )  +  ( ( 1  -  x
)  x.  A ) ) )
2 0re 9592 . . . . . . . . 9  |-  0  e.  RR
3 1re 9591 . . . . . . . . 9  |-  1  e.  RR
42, 3elicc2i 11586 . . . . . . . 8  |-  ( x  e.  ( 0 [,] 1 )  <->  ( x  e.  RR  /\  0  <_  x  /\  x  <_  1
) )
54simp1bi 1011 . . . . . . 7  |-  ( x  e.  ( 0 [,] 1 )  ->  x  e.  RR )
65adantl 466 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  x  e.  RR )
76recnd 9618 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  x  e.  CC )
8 simpl2 1000 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  B  e.  RR )
98recnd 9618 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  B  e.  CC )
107, 9mulcld 9612 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( x  x.  B )  e.  CC )
11 ax-1cn 9546 . . . . . 6  |-  1  e.  CC
12 subcl 9815 . . . . . 6  |-  ( ( 1  e.  CC  /\  x  e.  CC )  ->  ( 1  -  x
)  e.  CC )
1311, 7, 12sylancr 663 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( 1  -  x )  e.  CC )
14 simpl1 999 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  A  e.  RR )
1514recnd 9618 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  A  e.  CC )
1613, 15mulcld 9612 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  x )  x.  A )  e.  CC )
1710, 16addcomd 9777 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( x  x.  B )  +  ( ( 1  -  x )  x.  A
) )  =  ( ( ( 1  -  x )  x.  A
)  +  ( x  x.  B ) ) )
18 lincmb01cmp 11659 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  x )  x.  A )  +  ( x  x.  B
) )  e.  ( A [,] B ) )
1917, 18eqeltrd 2555 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( x  x.  B )  +  ( ( 1  -  x )  x.  A
) )  e.  ( A [,] B ) )
20 simpr 461 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
y  e.  ( A [,] B ) )
21 simpl1 999 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  ->  A  e.  RR )
22 simpl2 1000 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  ->  B  e.  RR )
23 elicc2 11585 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  e.  ( A [,] B )  <-> 
( y  e.  RR  /\  A  <_  y  /\  y  <_  B ) ) )
24233adant3 1016 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
y  e.  ( A [,] B )  <->  ( y  e.  RR  /\  A  <_ 
y  /\  y  <_  B ) ) )
2524biimpa 484 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( y  e.  RR  /\  A  <_  y  /\  y  <_  B ) )
2625simp1d 1008 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
y  e.  RR )
27 eqid 2467 . . . . . . 7  |-  ( A  -  A )  =  ( A  -  A
)
28 eqid 2467 . . . . . . 7  |-  ( B  -  A )  =  ( B  -  A
)
2927, 28iccshftl 11652 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  RR  /\  A  e.  RR ) )  -> 
( y  e.  ( A [,] B )  <-> 
( y  -  A
)  e.  ( ( A  -  A ) [,] ( B  -  A ) ) ) )
3021, 22, 26, 21, 29syl22anc 1229 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( y  e.  ( A [,] B )  <-> 
( y  -  A
)  e.  ( ( A  -  A ) [,] ( B  -  A ) ) ) )
3120, 30mpbid 210 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( y  -  A
)  e.  ( ( A  -  A ) [,] ( B  -  A ) ) )
3226, 21resubcld 9983 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( y  -  A
)  e.  RR )
3332recnd 9618 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( y  -  A
)  e.  CC )
34 difrp 11249 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( B  -  A )  e.  RR+ ) )
3534biimp3a 1328 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  RR+ )
3635adantr 465 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( B  -  A
)  e.  RR+ )
3736rpcnd 11254 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( B  -  A
)  e.  CC )
3836rpne0d 11257 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( B  -  A
)  =/=  0 )
3933, 37, 38divcan1d 10317 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( ( ( y  -  A )  / 
( B  -  A
) )  x.  ( B  -  A )
)  =  ( y  -  A ) )
4037mul02d 9773 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( 0  x.  ( B  -  A )
)  =  0 )
4121recnd 9618 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  ->  A  e.  CC )
4241subidd 9914 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( A  -  A
)  =  0 )
4340, 42eqtr4d 2511 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( 0  x.  ( B  -  A )
)  =  ( A  -  A ) )
4437mulid2d 9610 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( 1  x.  ( B  -  A )
)  =  ( B  -  A ) )
4543, 44oveq12d 6300 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( ( 0  x.  ( B  -  A
) ) [,] (
1  x.  ( B  -  A ) ) )  =  ( ( A  -  A ) [,] ( B  -  A ) ) )
4631, 39, 453eltr4d 2570 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( ( ( y  -  A )  / 
( B  -  A
) )  x.  ( B  -  A )
)  e.  ( ( 0  x.  ( B  -  A ) ) [,] ( 1  x.  ( B  -  A
) ) ) )
47 0red 9593 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
0  e.  RR )
483a1i 11 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
1  e.  RR )
4932, 36rerpdivcld 11279 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( ( y  -  A )  /  ( B  -  A )
)  e.  RR )
50 eqid 2467 . . . . 5  |-  ( 0  x.  ( B  -  A ) )  =  ( 0  x.  ( B  -  A )
)
51 eqid 2467 . . . . 5  |-  ( 1  x.  ( B  -  A ) )  =  ( 1  x.  ( B  -  A )
)
5250, 51iccdil 11654 . . . 4  |-  ( ( ( 0  e.  RR  /\  1  e.  RR )  /\  ( ( ( y  -  A )  /  ( B  -  A ) )  e.  RR  /\  ( B  -  A )  e.  RR+ ) )  ->  (
( ( y  -  A )  /  ( B  -  A )
)  e.  ( 0 [,] 1 )  <->  ( (
( y  -  A
)  /  ( B  -  A ) )  x.  ( B  -  A ) )  e.  ( ( 0  x.  ( B  -  A
) ) [,] (
1  x.  ( B  -  A ) ) ) ) )
5347, 48, 49, 36, 52syl22anc 1229 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( ( ( y  -  A )  / 
( B  -  A
) )  e.  ( 0 [,] 1 )  <-> 
( ( ( y  -  A )  / 
( B  -  A
) )  x.  ( B  -  A )
)  e.  ( ( 0  x.  ( B  -  A ) ) [,] ( 1  x.  ( B  -  A
) ) ) ) )
5446, 53mpbird 232 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( ( y  -  A )  /  ( B  -  A )
)  e.  ( 0 [,] 1 ) )
55 eqcom 2476 . . . 4  |-  ( x  =  ( ( y  -  A )  / 
( B  -  A
) )  <->  ( (
y  -  A )  /  ( B  -  A ) )  =  x )
5633adantrl 715 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
y  -  A )  e.  CC )
577adantrr 716 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  x  e.  CC )
5837adantrl 715 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  ( B  -  A )  e.  CC )
5938adantrl 715 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  ( B  -  A )  =/=  0 )
6056, 57, 58, 59divmul3d 10350 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
( ( y  -  A )  /  ( B  -  A )
)  =  x  <->  ( y  -  A )  =  ( x  x.  ( B  -  A ) ) ) )
6155, 60syl5bb 257 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
x  =  ( ( y  -  A )  /  ( B  -  A ) )  <->  ( y  -  A )  =  ( x  x.  ( B  -  A ) ) ) )
6226adantrl 715 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  y  e.  RR )
6362recnd 9618 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  y  e.  CC )
6441adantrl 715 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  A  e.  CC )
658, 14resubcld 9983 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( B  -  A )  e.  RR )
666, 65remulcld 9620 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( x  x.  ( B  -  A
) )  e.  RR )
6766adantrr 716 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
x  x.  ( B  -  A ) )  e.  RR )
6867recnd 9618 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
x  x.  ( B  -  A ) )  e.  CC )
6963, 64, 68subadd2d 9945 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
( y  -  A
)  =  ( x  x.  ( B  -  A ) )  <->  ( (
x  x.  ( B  -  A ) )  +  A )  =  y ) )
70 eqcom 2476 . . . 4  |-  ( ( ( x  x.  ( B  -  A )
)  +  A )  =  y  <->  y  =  ( ( x  x.  ( B  -  A
) )  +  A
) )
7169, 70syl6bb 261 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
( y  -  A
)  =  ( x  x.  ( B  -  A ) )  <->  y  =  ( ( x  x.  ( B  -  A
) )  +  A
) ) )
727, 15mulcld 9612 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( x  x.  A )  e.  CC )
7310, 72, 15subadd23d 9948 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( ( x  x.  B )  -  ( x  x.  A ) )  +  A )  =  ( ( x  x.  B
)  +  ( A  -  ( x  x.  A ) ) ) )
747, 9, 15subdid 10008 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( x  x.  ( B  -  A
) )  =  ( ( x  x.  B
)  -  ( x  x.  A ) ) )
7574oveq1d 6297 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( x  x.  ( B  -  A ) )  +  A )  =  ( ( ( x  x.  B )  -  (
x  x.  A ) )  +  A ) )
7611a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  1  e.  CC )
7776, 7, 15subdird 10009 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  x )  x.  A )  =  ( ( 1  x.  A
)  -  ( x  x.  A ) ) )
7815mulid2d 9610 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( 1  x.  A )  =  A )
7978oveq1d 6297 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( 1  x.  A )  -  ( x  x.  A
) )  =  ( A  -  ( x  x.  A ) ) )
8077, 79eqtrd 2508 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  x )  x.  A )  =  ( A  -  ( x  x.  A ) ) )
8180oveq2d 6298 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( x  x.  B )  +  ( ( 1  -  x )  x.  A
) )  =  ( ( x  x.  B
)  +  ( A  -  ( x  x.  A ) ) ) )
8273, 75, 813eqtr4d 2518 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( x  x.  ( B  -  A ) )  +  A )  =  ( ( x  x.  B
)  +  ( ( 1  -  x )  x.  A ) ) )
8382adantrr 716 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
( x  x.  ( B  -  A )
)  +  A )  =  ( ( x  x.  B )  +  ( ( 1  -  x )  x.  A
) ) )
8483eqeq2d 2481 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
y  =  ( ( x  x.  ( B  -  A ) )  +  A )  <->  y  =  ( ( x  x.  B )  +  ( ( 1  -  x
)  x.  A ) ) ) )
8561, 71, 843bitrd 279 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
x  =  ( ( y  -  A )  /  ( B  -  A ) )  <->  y  =  ( ( x  x.  B )  +  ( ( 1  -  x
)  x.  A ) ) ) )
861, 19, 54, 85f1ocnv2d 6508 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B
)  /\  `' F  =  ( y  e.  ( A [,] B
)  |->  ( ( y  -  A )  / 
( B  -  A
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4447    |-> cmpt 4505   `'ccnv 4998   -1-1-onto->wf1o 5585  (class class class)co 6282   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493    < clt 9624    <_ cle 9625    - cmin 9801    / cdiv 10202   RR+crp 11216   [,]cicc 11528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-rp 11217  df-icc 11532
This theorem is referenced by:  iccen  11661  icchmeo  21173
  Copyright terms: Public domain W3C validator