MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccf Structured version   Unicode version

Theorem iccf 11648
Description: The set of closed intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
iccf  |-  [,] :
( RR*  X.  RR* ) --> ~P RR*

Proof of Theorem iccf
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-icc 11561 . 2  |-  [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) } )
21ixxf 11564 1  |-  [,] :
( RR*  X.  RR* ) --> ~P RR*
Colors of variables: wff setvar class
Syntax hints:   ~Pcpw 4015    X. cxp 5006   -->wf 5590   RR*cxr 9644    <_ cle 9646   [,]cicc 11557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-xr 9649  df-icc 11561
This theorem is referenced by:  lecldbas  19847  ovolficc  22006  ovolficcss  22007  uniiccdif  22113  uniiccvol  22115  dyadmbllem  22134  dyadmbl  22135  opnmbllem  22136  opnmbllem0  30234  mblfinlem1  30235  mblfinlem2  30236
  Copyright terms: Public domain W3C validator