MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccf Structured version   Visualization version   Unicode version

Theorem iccf 11761
Description: The set of closed intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
iccf  |-  [,] :
( RR*  X.  RR* ) --> ~P RR*

Proof of Theorem iccf
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-icc 11670 . 2  |-  [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) } )
21ixxf 11673 1  |-  [,] :
( RR*  X.  RR* ) --> ~P RR*
Colors of variables: wff setvar class
Syntax hints:   ~Pcpw 3962    X. cxp 4850   -->wf 5596   RR*cxr 9699    <_ cle 9701   [,]cicc 11666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609  ax-cnex 9620  ax-resscn 9621
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-ral 2753  df-rex 2754  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-op 3986  df-uni 4212  df-iun 4293  df-br 4416  df-opab 4475  df-mpt 4476  df-id 4767  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-fv 5608  df-oprab 6318  df-mpt2 6319  df-1st 6819  df-2nd 6820  df-xr 9704  df-icc 11670
This theorem is referenced by:  lecldbas  20283  ovolficc  22469  ovolficcss  22470  uniiccdif  22583  uniiccvol  22585  dyadmbllem  22605  dyadmbl  22606  opnmbllem  22607  opnmbllem0  32020  mblfinlem1  32021  mblfinlem2  32022
  Copyright terms: Public domain W3C validator