MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccvx Structured version   Unicode version

Theorem icccvx 20527
Description: A linear combination of two reals lies in the interval between them. Equivalently, a closed interval is a convex set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
icccvx  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( (
( 1  -  T
)  x.  C )  +  ( T  x.  D ) )  e.  ( A [,] B
) ) )

Proof of Theorem icccvx
StepHypRef Expression
1 iccssre 11382 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
21sselda 3361 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,] B ) )  ->  C  e.  RR )
32adantrr 716 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B ) ) )  ->  C  e.  RR )
41sselda 3361 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  D  e.  ( A [,] B ) )  ->  D  e.  RR )
54adantrl 715 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B ) ) )  ->  D  e.  RR )
63, 5lttri4d 9520 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B ) ) )  ->  ( C  <  D  \/  C  =  D  \/  D  <  C ) )
763adantr3 1149 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  ( C  <  D  \/  C  =  D  \/  D  <  C ) )
8 iccss2 11371 . . . . . . . 8  |-  ( ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B ) )  -> 
( C [,] D
)  C_  ( A [,] B ) )
98adantl 466 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B ) ) )  ->  ( C [,] D )  C_  ( A [,] B ) )
1093adantr3 1149 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  ( C [,] D )  C_  ( A [,] B ) )
1110adantr 465 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  /\  C  <  D )  -> 
( C [,] D
)  C_  ( A [,] B ) )
123, 5jca 532 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B ) ) )  ->  ( C  e.  RR  /\  D  e.  RR ) )
13123adantr3 1149 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  ( C  e.  RR  /\  D  e.  RR ) )
14 simpr3 996 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  T  e.  ( 0 [,] 1
) )
1513, 14jca 532 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  (
( C  e.  RR  /\  D  e.  RR )  /\  T  e.  ( 0 [,] 1 ) ) )
16 lincmb01cmp 11433 . . . . . . . . . 10  |-  ( ( ( C  e.  RR  /\  D  e.  RR  /\  C  <  D )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  C )  +  ( T  x.  D
) )  e.  ( C [,] D ) )
1716ex 434 . . . . . . . . 9  |-  ( ( C  e.  RR  /\  D  e.  RR  /\  C  <  D )  ->  ( T  e.  ( 0 [,] 1 )  -> 
( ( ( 1  -  T )  x.  C )  +  ( T  x.  D ) )  e.  ( C [,] D ) ) )
18173expa 1187 . . . . . . . 8  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  C  <  D
)  ->  ( T  e.  ( 0 [,] 1
)  ->  ( (
( 1  -  T
)  x.  C )  +  ( T  x.  D ) )  e.  ( C [,] D
) ) )
1918imp 429 . . . . . . 7  |-  ( ( ( ( C  e.  RR  /\  D  e.  RR )  /\  C  <  D )  /\  T  e.  ( 0 [,] 1
) )  ->  (
( ( 1  -  T )  x.  C
)  +  ( T  x.  D ) )  e.  ( C [,] D ) )
2019an32s 802 . . . . . 6  |-  ( ( ( ( C  e.  RR  /\  D  e.  RR )  /\  T  e.  ( 0 [,] 1
) )  /\  C  <  D )  ->  (
( ( 1  -  T )  x.  C
)  +  ( T  x.  D ) )  e.  ( C [,] D ) )
2115, 20sylan 471 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  /\  C  <  D )  -> 
( ( ( 1  -  T )  x.  C )  +  ( T  x.  D ) )  e.  ( C [,] D ) )
2211, 21sseldd 3362 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  /\  C  <  D )  -> 
( ( ( 1  -  T )  x.  C )  +  ( T  x.  D ) )  e.  ( A [,] B ) )
23 oveq2 6104 . . . . . . 7  |-  ( C  =  D  ->  (
( 1  -  T
)  x.  C )  =  ( ( 1  -  T )  x.  D ) )
2423oveq1d 6111 . . . . . 6  |-  ( C  =  D  ->  (
( ( 1  -  T )  x.  C
)  +  ( T  x.  D ) )  =  ( ( ( 1  -  T )  x.  D )  +  ( T  x.  D
) ) )
25 unitssre 11437 . . . . . . . . . . 11  |-  ( 0 [,] 1 )  C_  RR
2625sseli 3357 . . . . . . . . . 10  |-  ( T  e.  ( 0 [,] 1 )  ->  T  e.  RR )
2726recnd 9417 . . . . . . . . 9  |-  ( T  e.  ( 0 [,] 1 )  ->  T  e.  CC )
2827ad2antll 728 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  ->  T  e.  CC )
294recnd 9417 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  D  e.  ( A [,] B ) )  ->  D  e.  CC )
3029adantrr 716 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  ->  D  e.  CC )
31 ax-1cn 9345 . . . . . . . . . . . 12  |-  1  e.  CC
32 npcan 9624 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  T  e.  CC )  ->  ( ( 1  -  T )  +  T
)  =  1 )
3331, 32mpan 670 . . . . . . . . . . 11  |-  ( T  e.  CC  ->  (
( 1  -  T
)  +  T )  =  1 )
3433adantr 465 . . . . . . . . . 10  |-  ( ( T  e.  CC  /\  D  e.  CC )  ->  ( ( 1  -  T )  +  T
)  =  1 )
3534oveq1d 6111 . . . . . . . . 9  |-  ( ( T  e.  CC  /\  D  e.  CC )  ->  ( ( ( 1  -  T )  +  T )  x.  D
)  =  ( 1  x.  D ) )
36 subcl 9614 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  T  e.  CC )  ->  ( 1  -  T
)  e.  CC )
3731, 36mpan 670 . . . . . . . . . . 11  |-  ( T  e.  CC  ->  (
1  -  T )  e.  CC )
3837ancri 552 . . . . . . . . . 10  |-  ( T  e.  CC  ->  (
( 1  -  T
)  e.  CC  /\  T  e.  CC )
)
39 adddir 9382 . . . . . . . . . . 11  |-  ( ( ( 1  -  T
)  e.  CC  /\  T  e.  CC  /\  D  e.  CC )  ->  (
( ( 1  -  T )  +  T
)  x.  D )  =  ( ( ( 1  -  T )  x.  D )  +  ( T  x.  D
) ) )
40393expa 1187 . . . . . . . . . 10  |-  ( ( ( ( 1  -  T )  e.  CC  /\  T  e.  CC )  /\  D  e.  CC )  ->  ( ( ( 1  -  T )  +  T )  x.  D )  =  ( ( ( 1  -  T )  x.  D
)  +  ( T  x.  D ) ) )
4138, 40sylan 471 . . . . . . . . 9  |-  ( ( T  e.  CC  /\  D  e.  CC )  ->  ( ( ( 1  -  T )  +  T )  x.  D
)  =  ( ( ( 1  -  T
)  x.  D )  +  ( T  x.  D ) ) )
42 mulid2 9389 . . . . . . . . . 10  |-  ( D  e.  CC  ->  (
1  x.  D )  =  D )
4342adantl 466 . . . . . . . . 9  |-  ( ( T  e.  CC  /\  D  e.  CC )  ->  ( 1  x.  D
)  =  D )
4435, 41, 433eqtr3d 2483 . . . . . . . 8  |-  ( ( T  e.  CC  /\  D  e.  CC )  ->  ( ( ( 1  -  T )  x.  D )  +  ( T  x.  D ) )  =  D )
4528, 30, 44syl2anc 661 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( ( 1  -  T )  x.  D )  +  ( T  x.  D ) )  =  D )
46453adantr1 1147 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  (
( ( 1  -  T )  x.  D
)  +  ( T  x.  D ) )  =  D )
4724, 46sylan9eqr 2497 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  /\  C  =  D )  ->  ( ( ( 1  -  T )  x.  C )  +  ( T  x.  D ) )  =  D )
48 simplr2 1031 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  /\  C  =  D )  ->  D  e.  ( A [,] B ) )
4947, 48eqeltrd 2517 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  /\  C  =  D )  ->  ( ( ( 1  -  T )  x.  C )  +  ( T  x.  D ) )  e.  ( A [,] B ) )
50 iccss2 11371 . . . . . . . . 9  |-  ( ( D  e.  ( A [,] B )  /\  C  e.  ( A [,] B ) )  -> 
( D [,] C
)  C_  ( A [,] B ) )
5150adantl 466 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( D  e.  ( A [,] B
)  /\  C  e.  ( A [,] B ) ) )  ->  ( D [,] C )  C_  ( A [,] B ) )
5251ancom2s 800 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B ) ) )  ->  ( D [,] C )  C_  ( A [,] B ) )
53523adantr3 1149 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  ( D [,] C )  C_  ( A [,] B ) )
5453adantr 465 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  /\  D  <  C )  -> 
( D [,] C
)  C_  ( A [,] B ) )
555, 3jca 532 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B ) ) )  ->  ( D  e.  RR  /\  C  e.  RR ) )
56553adantr3 1149 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  ( D  e.  RR  /\  C  e.  RR ) )
5756, 14jca 532 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  (
( D  e.  RR  /\  C  e.  RR )  /\  T  e.  ( 0 [,] 1 ) ) )
58 iirev 20506 . . . . . . . . . . . . . . . . . 18  |-  ( T  e.  ( 0 [,] 1 )  ->  (
1  -  T )  e.  ( 0 [,] 1 ) )
5925, 58sseldi 3359 . . . . . . . . . . . . . . . . 17  |-  ( T  e.  ( 0 [,] 1 )  ->  (
1  -  T )  e.  RR )
6059recnd 9417 . . . . . . . . . . . . . . . 16  |-  ( T  e.  ( 0 [,] 1 )  ->  (
1  -  T )  e.  CC )
61 recn 9377 . . . . . . . . . . . . . . . 16  |-  ( C  e.  RR  ->  C  e.  CC )
62 mulcl 9371 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  -  T
)  e.  CC  /\  C  e.  CC )  ->  ( ( 1  -  T )  x.  C
)  e.  CC )
6360, 61, 62syl2anr 478 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  RR  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  T )  x.  C )  e.  CC )
6463adantll 713 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  RR  /\  C  e.  RR )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( (
1  -  T )  x.  C )  e.  CC )
65 recn 9377 . . . . . . . . . . . . . . . 16  |-  ( D  e.  RR  ->  D  e.  CC )
66 mulcl 9371 . . . . . . . . . . . . . . . 16  |-  ( ( T  e.  CC  /\  D  e.  CC )  ->  ( T  x.  D
)  e.  CC )
6727, 65, 66syl2anr 478 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  RR  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  D )  e.  CC )
6867adantlr 714 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  RR  /\  C  e.  RR )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  D )  e.  CC )
6964, 68addcomd 9576 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  RR  /\  C  e.  RR )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( (
( 1  -  T
)  x.  C )  +  ( T  x.  D ) )  =  ( ( T  x.  D )  +  ( ( 1  -  T
)  x.  C ) ) )
70693adantl3 1146 . . . . . . . . . . . 12  |-  ( ( ( D  e.  RR  /\  C  e.  RR  /\  D  <  C )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  C )  +  ( T  x.  D
) )  =  ( ( T  x.  D
)  +  ( ( 1  -  T )  x.  C ) ) )
71 nncan 9643 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  CC  /\  T  e.  CC )  ->  ( 1  -  (
1  -  T ) )  =  T )
7231, 71mpan 670 . . . . . . . . . . . . . . . . 17  |-  ( T  e.  CC  ->  (
1  -  ( 1  -  T ) )  =  T )
7372eqcomd 2448 . . . . . . . . . . . . . . . 16  |-  ( T  e.  CC  ->  T  =  ( 1  -  ( 1  -  T
) ) )
7473oveq1d 6111 . . . . . . . . . . . . . . 15  |-  ( T  e.  CC  ->  ( T  x.  D )  =  ( ( 1  -  ( 1  -  T ) )  x.  D ) )
7574oveq1d 6111 . . . . . . . . . . . . . 14  |-  ( T  e.  CC  ->  (
( T  x.  D
)  +  ( ( 1  -  T )  x.  C ) )  =  ( ( ( 1  -  ( 1  -  T ) )  x.  D )  +  ( ( 1  -  T )  x.  C
) ) )
7627, 75syl 16 . . . . . . . . . . . . 13  |-  ( T  e.  ( 0 [,] 1 )  ->  (
( T  x.  D
)  +  ( ( 1  -  T )  x.  C ) )  =  ( ( ( 1  -  ( 1  -  T ) )  x.  D )  +  ( ( 1  -  T )  x.  C
) ) )
7776adantl 466 . . . . . . . . . . . 12  |-  ( ( ( D  e.  RR  /\  C  e.  RR  /\  D  <  C )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( T  x.  D )  +  ( ( 1  -  T )  x.  C
) )  =  ( ( ( 1  -  ( 1  -  T
) )  x.  D
)  +  ( ( 1  -  T )  x.  C ) ) )
7870, 77eqtrd 2475 . . . . . . . . . . 11  |-  ( ( ( D  e.  RR  /\  C  e.  RR  /\  D  <  C )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  C )  +  ( T  x.  D
) )  =  ( ( ( 1  -  ( 1  -  T
) )  x.  D
)  +  ( ( 1  -  T )  x.  C ) ) )
79 lincmb01cmp 11433 . . . . . . . . . . . 12  |-  ( ( ( D  e.  RR  /\  C  e.  RR  /\  D  <  C )  /\  ( 1  -  T
)  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  ( 1  -  T ) )  x.  D )  +  ( ( 1  -  T )  x.  C
) )  e.  ( D [,] C ) )
8058, 79sylan2 474 . . . . . . . . . . 11  |-  ( ( ( D  e.  RR  /\  C  e.  RR  /\  D  <  C )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  ( 1  -  T ) )  x.  D )  +  ( ( 1  -  T )  x.  C
) )  e.  ( D [,] C ) )
8178, 80eqeltrd 2517 . . . . . . . . . 10  |-  ( ( ( D  e.  RR  /\  C  e.  RR  /\  D  <  C )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  C )  +  ( T  x.  D
) )  e.  ( D [,] C ) )
8281ex 434 . . . . . . . . 9  |-  ( ( D  e.  RR  /\  C  e.  RR  /\  D  <  C )  ->  ( T  e.  ( 0 [,] 1 )  -> 
( ( ( 1  -  T )  x.  C )  +  ( T  x.  D ) )  e.  ( D [,] C ) ) )
83823expa 1187 . . . . . . . 8  |-  ( ( ( D  e.  RR  /\  C  e.  RR )  /\  D  <  C
)  ->  ( T  e.  ( 0 [,] 1
)  ->  ( (
( 1  -  T
)  x.  C )  +  ( T  x.  D ) )  e.  ( D [,] C
) ) )
8483imp 429 . . . . . . 7  |-  ( ( ( ( D  e.  RR  /\  C  e.  RR )  /\  D  <  C )  /\  T  e.  ( 0 [,] 1
) )  ->  (
( ( 1  -  T )  x.  C
)  +  ( T  x.  D ) )  e.  ( D [,] C ) )
8584an32s 802 . . . . . 6  |-  ( ( ( ( D  e.  RR  /\  C  e.  RR )  /\  T  e.  ( 0 [,] 1
) )  /\  D  <  C )  ->  (
( ( 1  -  T )  x.  C
)  +  ( T  x.  D ) )  e.  ( D [,] C ) )
8657, 85sylan 471 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  /\  D  <  C )  -> 
( ( ( 1  -  T )  x.  C )  +  ( T  x.  D ) )  e.  ( D [,] C ) )
8754, 86sseldd 3362 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  /\  D  <  C )  -> 
( ( ( 1  -  T )  x.  C )  +  ( T  x.  D ) )  e.  ( A [,] B ) )
8822, 49, 873jaodan 1284 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  /\  ( C  <  D  \/  C  =  D  \/  D  <  C ) )  ->  ( ( ( 1  -  T )  x.  C )  +  ( T  x.  D
) )  e.  ( A [,] B ) )
897, 88mpdan 668 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  (
( ( 1  -  T )  x.  C
)  +  ( T  x.  D ) )  e.  ( A [,] B ) )
9089ex 434 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( (
( 1  -  T
)  x.  C )  +  ( T  x.  D ) )  e.  ( A [,] B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    \/ w3o 964    /\ w3a 965    = wceq 1369    e. wcel 1756    C_ wss 3333   class class class wbr 4297  (class class class)co 6096   CCcc 9285   RRcr 9286   0cc0 9287   1c1 9288    + caddc 9290    x. cmul 9292    < clt 9423    - cmin 9600   [,]cicc 11308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-po 4646  df-so 4647  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-1st 6582  df-2nd 6583  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-rp 10997  df-icc 11312
This theorem is referenced by:  reparphti  20574
  Copyright terms: Public domain W3C validator