MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmplem2 Unicode version

Theorem icccmplem2 18807
Description: Lemma for icccmp 18809. (Contributed by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1  |-  J  =  ( topGen `  ran  (,) )
icccmp.2  |-  T  =  ( Jt  ( A [,] B ) )
icccmp.3  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
icccmp.4  |-  S  =  { x  e.  ( A [,] B )  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }
icccmp.5  |-  ( ph  ->  A  e.  RR )
icccmp.6  |-  ( ph  ->  B  e.  RR )
icccmp.7  |-  ( ph  ->  A  <_  B )
icccmp.8  |-  ( ph  ->  U  C_  J )
icccmp.9  |-  ( ph  ->  ( A [,] B
)  C_  U. U )
icccmp.10  |-  ( ph  ->  V  e.  U )
icccmp.11  |-  ( ph  ->  C  e.  RR+ )
icccmp.12  |-  ( ph  ->  ( G ( ball `  D ) C ) 
C_  V )
icccmp.13  |-  G  =  sup ( S ,  RR ,  <  )
icccmp.14  |-  R  =  if ( ( G  +  ( C  / 
2 ) )  <_  B ,  ( G  +  ( C  / 
2 ) ) ,  B )
Assertion
Ref Expression
icccmplem2  |-  ( ph  ->  B  e.  S )
Distinct variable groups:    x, z, B    x, A, z    x, D    x, T, z    z, J    x, U, z
Allowed substitution hints:    ph( x, z)    C( x, z)    D( z)    R( x, z)    S( x, z)    G( x, z)    J( x)    V( x, z)

Proof of Theorem icccmplem2
Dummy variables  t  n  v  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccmp.13 . . . . . . 7  |-  G  =  sup ( S ,  RR ,  <  )
2 icccmp.4 . . . . . . . . . 10  |-  S  =  { x  e.  ( A [,] B )  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }
3 ssrab2 3388 . . . . . . . . . 10  |-  { x  e.  ( A [,] B
)  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }  C_  ( A [,] B )
42, 3eqsstri 3338 . . . . . . . . 9  |-  S  C_  ( A [,] B )
5 icccmp.5 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
6 icccmp.6 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR )
7 iccssre 10948 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
85, 6, 7syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( A [,] B
)  C_  RR )
94, 8syl5ss 3319 . . . . . . . 8  |-  ( ph  ->  S  C_  RR )
10 icccmp.1 . . . . . . . . . . 11  |-  J  =  ( topGen `  ran  (,) )
11 icccmp.2 . . . . . . . . . . 11  |-  T  =  ( Jt  ( A [,] B ) )
12 icccmp.3 . . . . . . . . . . 11  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
13 icccmp.7 . . . . . . . . . . 11  |-  ( ph  ->  A  <_  B )
14 icccmp.8 . . . . . . . . . . 11  |-  ( ph  ->  U  C_  J )
15 icccmp.9 . . . . . . . . . . 11  |-  ( ph  ->  ( A [,] B
)  C_  U. U )
1610, 11, 12, 2, 5, 6, 13, 14, 15icccmplem1 18806 . . . . . . . . . 10  |-  ( ph  ->  ( A  e.  S  /\  A. y  e.  S  y  <_  B ) )
1716simpld 446 . . . . . . . . 9  |-  ( ph  ->  A  e.  S )
18 ne0i 3594 . . . . . . . . 9  |-  ( A  e.  S  ->  S  =/=  (/) )
1917, 18syl 16 . . . . . . . 8  |-  ( ph  ->  S  =/=  (/) )
2016simprd 450 . . . . . . . . 9  |-  ( ph  ->  A. y  e.  S  y  <_  B )
21 breq2 4176 . . . . . . . . . . 11  |-  ( n  =  B  ->  (
y  <_  n  <->  y  <_  B ) )
2221ralbidv 2686 . . . . . . . . . 10  |-  ( n  =  B  ->  ( A. y  e.  S  y  <_  n  <->  A. y  e.  S  y  <_  B ) )
2322rspcev 3012 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A. y  e.  S  y  <_  B )  ->  E. n  e.  RR  A. y  e.  S  y  <_  n )
246, 20, 23syl2anc 643 . . . . . . . 8  |-  ( ph  ->  E. n  e.  RR  A. y  e.  S  y  <_  n )
25 suprcl 9924 . . . . . . . 8  |-  ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. n  e.  RR  A. y  e.  S  y  <_  n
)  ->  sup ( S ,  RR ,  <  )  e.  RR )
269, 19, 24, 25syl3anc 1184 . . . . . . 7  |-  ( ph  ->  sup ( S ,  RR ,  <  )  e.  RR )
271, 26syl5eqel 2488 . . . . . 6  |-  ( ph  ->  G  e.  RR )
28 icccmp.11 . . . . . . 7  |-  ( ph  ->  C  e.  RR+ )
2928rphalfcld 10616 . . . . . 6  |-  ( ph  ->  ( C  /  2
)  e.  RR+ )
3027, 29ltaddrpd 10633 . . . . 5  |-  ( ph  ->  G  <  ( G  +  ( C  / 
2 ) ) )
3129rpred 10604 . . . . . . 7  |-  ( ph  ->  ( C  /  2
)  e.  RR )
3227, 31readdcld 9071 . . . . . 6  |-  ( ph  ->  ( G  +  ( C  /  2 ) )  e.  RR )
3327, 32ltnled 9176 . . . . 5  |-  ( ph  ->  ( G  <  ( G  +  ( C  /  2 ) )  <->  -.  ( G  +  ( C  /  2 ) )  <_  G )
)
3430, 33mpbid 202 . . . 4  |-  ( ph  ->  -.  ( G  +  ( C  /  2
) )  <_  G
)
35 icccmp.14 . . . . . . . . . 10  |-  R  =  if ( ( G  +  ( C  / 
2 ) )  <_  B ,  ( G  +  ( C  / 
2 ) ) ,  B )
36 ifcl 3735 . . . . . . . . . . 11  |-  ( ( ( G  +  ( C  /  2 ) )  e.  RR  /\  B  e.  RR )  ->  if ( ( G  +  ( C  / 
2 ) )  <_  B ,  ( G  +  ( C  / 
2 ) ) ,  B )  e.  RR )
3732, 6, 36syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  if ( ( G  +  ( C  / 
2 ) )  <_  B ,  ( G  +  ( C  / 
2 ) ) ,  B )  e.  RR )
3835, 37syl5eqel 2488 . . . . . . . . 9  |-  ( ph  ->  R  e.  RR )
39 suprub 9925 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. n  e.  RR  A. y  e.  S  y  <_  n )  /\  A  e.  S )  ->  A  <_  sup ( S ,  RR ,  <  ) )
409, 19, 24, 17, 39syl31anc 1187 . . . . . . . . . . . . 13  |-  ( ph  ->  A  <_  sup ( S ,  RR ,  <  ) )
4140, 1syl6breqr 4212 . . . . . . . . . . . 12  |-  ( ph  ->  A  <_  G )
4227, 32, 30ltled 9177 . . . . . . . . . . . 12  |-  ( ph  ->  G  <_  ( G  +  ( C  / 
2 ) ) )
435, 27, 32, 41, 42letrd 9183 . . . . . . . . . . 11  |-  ( ph  ->  A  <_  ( G  +  ( C  / 
2 ) ) )
44 breq2 4176 . . . . . . . . . . . 12  |-  ( ( G  +  ( C  /  2 ) )  =  if ( ( G  +  ( C  /  2 ) )  <_  B ,  ( G  +  ( C  /  2 ) ) ,  B )  -> 
( A  <_  ( G  +  ( C  /  2 ) )  <-> 
A  <_  if (
( G  +  ( C  /  2 ) )  <_  B , 
( G  +  ( C  /  2 ) ) ,  B ) ) )
45 breq2 4176 . . . . . . . . . . . 12  |-  ( B  =  if ( ( G  +  ( C  /  2 ) )  <_  B ,  ( G  +  ( C  /  2 ) ) ,  B )  -> 
( A  <_  B  <->  A  <_  if ( ( G  +  ( C  /  2 ) )  <_  B ,  ( G  +  ( C  /  2 ) ) ,  B ) ) )
4644, 45ifboth 3730 . . . . . . . . . . 11  |-  ( ( A  <_  ( G  +  ( C  / 
2 ) )  /\  A  <_  B )  ->  A  <_  if ( ( G  +  ( C  /  2 ) )  <_  B ,  ( G  +  ( C  /  2 ) ) ,  B ) )
4743, 13, 46syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  A  <_  if (
( G  +  ( C  /  2 ) )  <_  B , 
( G  +  ( C  /  2 ) ) ,  B ) )
4847, 35syl6breqr 4212 . . . . . . . . 9  |-  ( ph  ->  A  <_  R )
49 min2 10733 . . . . . . . . . . 11  |-  ( ( ( G  +  ( C  /  2 ) )  e.  RR  /\  B  e.  RR )  ->  if ( ( G  +  ( C  / 
2 ) )  <_  B ,  ( G  +  ( C  / 
2 ) ) ,  B )  <_  B
)
5032, 6, 49syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  if ( ( G  +  ( C  / 
2 ) )  <_  B ,  ( G  +  ( C  / 
2 ) ) ,  B )  <_  B
)
5135, 50syl5eqbr 4205 . . . . . . . . 9  |-  ( ph  ->  R  <_  B )
52 elicc2 10931 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( R  e.  ( A [,] B )  <-> 
( R  e.  RR  /\  A  <_  R  /\  R  <_  B ) ) )
535, 6, 52syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( R  e.  ( A [,] B )  <-> 
( R  e.  RR  /\  A  <_  R  /\  R  <_  B ) ) )
5438, 48, 51, 53mpbir3and 1137 . . . . . . . 8  |-  ( ph  ->  R  e.  ( A [,] B ) )
5527, 28ltsubrpd 10632 . . . . . . . . . . 11  |-  ( ph  ->  ( G  -  C
)  <  G )
5655, 1syl6breq 4211 . . . . . . . . . 10  |-  ( ph  ->  ( G  -  C
)  <  sup ( S ,  RR ,  <  ) )
5728rpred 10604 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  RR )
5827, 57resubcld 9421 . . . . . . . . . . 11  |-  ( ph  ->  ( G  -  C
)  e.  RR )
59 suprlub 9926 . . . . . . . . . . 11  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. n  e.  RR  A. y  e.  S  y  <_  n )  /\  ( G  -  C )  e.  RR )  ->  (
( G  -  C
)  <  sup ( S ,  RR ,  <  )  <->  E. v  e.  S  ( G  -  C
)  <  v )
)
609, 19, 24, 58, 59syl31anc 1187 . . . . . . . . . 10  |-  ( ph  ->  ( ( G  -  C )  <  sup ( S ,  RR ,  <  )  <->  E. v  e.  S  ( G  -  C
)  <  v )
)
6156, 60mpbid 202 . . . . . . . . 9  |-  ( ph  ->  E. v  e.  S  ( G  -  C
)  <  v )
62 oveq2 6048 . . . . . . . . . . . . . 14  |-  ( x  =  v  ->  ( A [,] x )  =  ( A [,] v
) )
6362sseq1d 3335 . . . . . . . . . . . . 13  |-  ( x  =  v  ->  (
( A [,] x
)  C_  U. z  <->  ( A [,] v ) 
C_  U. z ) )
6463rexbidv 2687 . . . . . . . . . . . 12  |-  ( x  =  v  ->  ( E. z  e.  ( ~P U  i^i  Fin )
( A [,] x
)  C_  U. z  <->  E. z  e.  ( ~P U  i^i  Fin )
( A [,] v
)  C_  U. z
) )
6564, 2elrab2 3054 . . . . . . . . . . 11  |-  ( v  e.  S  <->  ( v  e.  ( A [,] B
)  /\  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] v )  C_  U. z
) )
66 unieq 3984 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  U. z  =  U. w )
6766sseq2d 3336 . . . . . . . . . . . . . 14  |-  ( z  =  w  ->  (
( A [,] v
)  C_  U. z  <->  ( A [,] v ) 
C_  U. w ) )
6867cbvrexv 2893 . . . . . . . . . . . . 13  |-  ( E. z  e.  ( ~P U  i^i  Fin )
( A [,] v
)  C_  U. z  <->  E. w  e.  ( ~P U  i^i  Fin )
( A [,] v
)  C_  U. w
)
69 simpr1 963 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  w  e.  ( ~P U  i^i  Fin ) )
70 elin 3490 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  e.  ( ~P U  i^i  Fin )  <->  ( w  e.  ~P U  /\  w  e.  Fin ) )
7169, 70sylib 189 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( w  e.  ~P U  /\  w  e.  Fin ) )
7271simpld 446 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  w  e.  ~P U )
7372elpwid 3768 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  w  C_  U
)
74 simpll 731 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ph )
75 icccmp.10 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  V  e.  U )
7674, 75syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  V  e.  U )
7776snssd 3903 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  { V }  C_  U )
7873, 77unssd 3483 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( w  u.  { V } ) 
C_  U )
79 vex 2919 . . . . . . . . . . . . . . . . . . . 20  |-  w  e. 
_V
80 snex 4365 . . . . . . . . . . . . . . . . . . . 20  |-  { V }  e.  _V
8179, 80unex 4666 . . . . . . . . . . . . . . . . . . 19  |-  ( w  u.  { V }
)  e.  _V
8281elpw 3765 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  u.  { V } )  e.  ~P U 
<->  ( w  u.  { V } )  C_  U
)
8378, 82sylibr 204 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( w  u.  { V } )  e.  ~P U )
8471simprd 450 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  w  e.  Fin )
85 snfi 7146 . . . . . . . . . . . . . . . . . 18  |-  { V }  e.  Fin
86 unfi 7333 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  Fin  /\  { V }  e.  Fin )  ->  ( w  u. 
{ V } )  e.  Fin )
8784, 85, 86sylancl 644 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( w  u.  { V } )  e.  Fin )
88 elin 3490 . . . . . . . . . . . . . . . . 17  |-  ( ( w  u.  { V } )  e.  ( ~P U  i^i  Fin ) 
<->  ( ( w  u. 
{ V } )  e.  ~P U  /\  ( w  u.  { V } )  e.  Fin ) )
8983, 87, 88sylanbrc 646 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( w  u.  { V } )  e.  ( ~P U  i^i  Fin ) )
90 simplr2 1000 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  t  <_  v ) )  ->  ( A [,] v )  C_  U. w )
91 ssun1 3470 . . . . . . . . . . . . . . . . . . . . . . 23  |-  U. w  C_  ( U. w  u.  V )
9290, 91syl6ss 3320 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  t  <_  v ) )  ->  ( A [,] v )  C_  ( U. w  u.  V
) )
9374, 5syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  A  e.  RR )
9474, 38syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  R  e.  RR )
95 elicc2 10931 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  ( t  e.  ( A [,] R )  <-> 
( t  e.  RR  /\  A  <_  t  /\  t  <_  R ) ) )
9693, 94, 95syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( t  e.  ( A [,] R
)  <->  ( t  e.  RR  /\  A  <_ 
t  /\  t  <_  R ) ) )
9796biimpa 471 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  t  e.  ( A [,] R ) )  ->  ( t  e.  RR  /\  A  <_ 
t  /\  t  <_  R ) )
9897simp1d 969 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  t  e.  ( A [,] R ) )  ->  t  e.  RR )
9998adantrr 698 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  t  <_  v ) )  ->  t  e.  RR )
10097simp2d 970 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  t  e.  ( A [,] R ) )  ->  A  <_  t )
101100adantrr 698 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  t  <_  v ) )  ->  A  <_  t )
102 simprr 734 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  t  <_  v ) )  ->  t  <_  v )
10374, 8syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( A [,] B )  C_  RR )
104 simplr 732 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  v  e.  ( A [,] B ) )
105103, 104sseldd 3309 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  v  e.  RR )
106 elicc2 10931 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  RR  /\  v  e.  RR )  ->  ( t  e.  ( A [,] v )  <-> 
( t  e.  RR  /\  A  <_  t  /\  t  <_  v ) ) )
10793, 105, 106syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( t  e.  ( A [,] v
)  <->  ( t  e.  RR  /\  A  <_ 
t  /\  t  <_  v ) ) )
108107adantr 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  t  <_  v ) )  ->  (
t  e.  ( A [,] v )  <->  ( t  e.  RR  /\  A  <_ 
t  /\  t  <_  v ) ) )
10999, 101, 102, 108mpbir3and 1137 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  t  <_  v ) )  ->  t  e.  ( A [,] v
) )
11092, 109sseldd 3309 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  t  <_  v ) )  ->  t  e.  ( U. w  u.  V ) )
111110expr 599 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  t  e.  ( A [,] R ) )  ->  ( t  <_  v  ->  t  e.  ( U. w  u.  V
) ) )
11274adantr 452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  ph )
113 icccmp.12 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( G ( ball `  D ) C ) 
C_  V )
114112, 113syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  ( G ( ball `  D
) C )  C_  V )
11598adantrr 698 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  t  e.  RR )
116112, 58syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  ( G  -  C )  e.  RR )
117105adantr 452 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  v  e.  RR )
118 simplr3 1001 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  ( G  -  C )  <  v )
119 simprr 734 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  v  <  t )
120116, 117, 115, 118, 119lttrd 9187 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  ( G  -  C )  <  t )
121112, 38syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  R  e.  RR )
12227, 57readdcld 9071 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( G  +  C
)  e.  RR )
123112, 122syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  ( G  +  C )  e.  RR )
12497simp3d 971 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  t  e.  ( A [,] R ) )  ->  t  <_  R )
125124adantrr 698 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  t  <_  R )
126 min1 10732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( G  +  ( C  /  2 ) )  e.  RR  /\  B  e.  RR )  ->  if ( ( G  +  ( C  / 
2 ) )  <_  B ,  ( G  +  ( C  / 
2 ) ) ,  B )  <_  ( G  +  ( C  /  2 ) ) )
12732, 6, 126syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  if ( ( G  +  ( C  / 
2 ) )  <_  B ,  ( G  +  ( C  / 
2 ) ) ,  B )  <_  ( G  +  ( C  /  2 ) ) )
12835, 127syl5eqbr 4205 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  R  <_  ( G  +  ( C  / 
2 ) ) )
129 rphalflt 10594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( C  e.  RR+  ->  ( C  /  2 )  < 
C )
13028, 129syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  ( C  /  2
)  <  C )
13131, 57, 27, 130ltadd2dd 9185 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  ( G  +  ( C  /  2 ) )  <  ( G  +  C ) )
13238, 32, 122, 128, 131lelttrd 9184 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  R  <  ( G  +  C ) )
133112, 132syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  R  <  ( G  +  C
) )
134115, 121, 123, 125, 133lelttrd 9184 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  t  <  ( G  +  C
) )
135 rexr 9086 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( G  -  C )  e.  RR  ->  ( G  -  C )  e.  RR* )
136 rexr 9086 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( G  +  C )  e.  RR  ->  ( G  +  C )  e.  RR* )
137 elioo2 10913 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( G  -  C
)  e.  RR*  /\  ( G  +  C )  e.  RR* )  ->  (
t  e.  ( ( G  -  C ) (,) ( G  +  C ) )  <->  ( t  e.  RR  /\  ( G  -  C )  < 
t  /\  t  <  ( G  +  C ) ) ) )
138135, 136, 137syl2an 464 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( G  -  C
)  e.  RR  /\  ( G  +  C
)  e.  RR )  ->  ( t  e.  ( ( G  -  C ) (,) ( G  +  C )
)  <->  ( t  e.  RR  /\  ( G  -  C )  < 
t  /\  t  <  ( G  +  C ) ) ) )
139116, 123, 138syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  (
t  e.  ( ( G  -  C ) (,) ( G  +  C ) )  <->  ( t  e.  RR  /\  ( G  -  C )  < 
t  /\  t  <  ( G  +  C ) ) ) )
140115, 120, 134, 139mpbir3and 1137 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  t  e.  ( ( G  -  C ) (,) ( G  +  C )
) )
141112, 27syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  G  e.  RR )
142112, 28syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  C  e.  RR+ )
143142rpred 10604 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  C  e.  RR )
14412bl2ioo 18776 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( G  e.  RR  /\  C  e.  RR )  ->  ( G ( ball `  D ) C )  =  ( ( G  -  C ) (,) ( G  +  C
) ) )
145141, 143, 144syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  ( G ( ball `  D
) C )  =  ( ( G  -  C ) (,) ( G  +  C )
) )
146140, 145eleqtrrd 2481 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  t  e.  ( G ( ball `  D ) C ) )
147114, 146sseldd 3309 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  t  e.  V )
148 elun2 3475 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( t  e.  V  ->  t  e.  ( U. w  u.  V ) )
149147, 148syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  t  e.  ( U. w  u.  V ) )
150149expr 599 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  t  e.  ( A [,] R ) )  ->  ( v  <  t  ->  t  e.  ( U. w  u.  V
) ) )
151105adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  t  e.  ( A [,] R ) )  ->  v  e.  RR )
152 lelttric 9136 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( t  e.  RR  /\  v  e.  RR )  ->  ( t  <_  v  \/  v  <  t ) )
15398, 151, 152syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  t  e.  ( A [,] R ) )  ->  ( t  <_  v  \/  v  < 
t ) )
154111, 150, 153mpjaod 371 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  t  e.  ( A [,] R ) )  ->  t  e.  ( U. w  u.  V
) )
155154ex 424 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( t  e.  ( A [,] R
)  ->  t  e.  ( U. w  u.  V
) ) )
156155ssrdv 3314 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( A [,] R )  C_  ( U. w  u.  V
) )
157 uniun 3994 . . . . . . . . . . . . . . . . . 18  |-  U. (
w  u.  { V } )  =  ( U. w  u.  U. { V } )
158 unisng 3992 . . . . . . . . . . . . . . . . . . . 20  |-  ( V  e.  U  ->  U. { V }  =  V
)
15976, 158syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  U. { V }  =  V )
160159uneq2d 3461 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( U. w  u.  U. { V } )  =  ( U. w  u.  V
) )
161157, 160syl5eq 2448 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  U. (
w  u.  { V } )  =  ( U. w  u.  V
) )
162156, 161sseqtr4d 3345 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( A [,] R )  C_  U. (
w  u.  { V } ) )
163 unieq 3984 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( w  u. 
{ V } )  ->  U. y  =  U. ( w  u.  { V } ) )
164163sseq2d 3336 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( w  u. 
{ V } )  ->  ( ( A [,] R )  C_  U. y  <->  ( A [,] R )  C_  U. (
w  u.  { V } ) ) )
165164rspcev 3012 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  u.  { V } )  e.  ( ~P U  i^i  Fin )  /\  ( A [,] R )  C_  U. (
w  u.  { V } ) )  ->  E. y  e.  ( ~P U  i^i  Fin )
( A [,] R
)  C_  U. y
)
16689, 162, 165syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  E. y  e.  ( ~P U  i^i  Fin ) ( A [,] R )  C_  U. y
)
1671663exp2 1171 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  ( A [,] B ) )  ->  ( w  e.  ( ~P U  i^i  Fin )  ->  ( ( A [,] v )  C_  U. w  ->  ( ( G  -  C )  <  v  ->  E. y  e.  ( ~P U  i^i  Fin ) ( A [,] R )  C_  U. y
) ) ) )
168167rexlimdv 2789 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( A [,] B ) )  ->  ( E. w  e.  ( ~P U  i^i  Fin ) ( A [,] v ) 
C_  U. w  ->  (
( G  -  C
)  <  v  ->  E. y  e.  ( ~P U  i^i  Fin )
( A [,] R
)  C_  U. y
) ) )
16968, 168syl5bi 209 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( A [,] B ) )  ->  ( E. z  e.  ( ~P U  i^i  Fin ) ( A [,] v ) 
C_  U. z  ->  (
( G  -  C
)  <  v  ->  E. y  e.  ( ~P U  i^i  Fin )
( A [,] R
)  C_  U. y
) ) )
170169expimpd 587 . . . . . . . . . . 11  |-  ( ph  ->  ( ( v  e.  ( A [,] B
)  /\  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] v )  C_  U. z
)  ->  ( ( G  -  C )  <  v  ->  E. y  e.  ( ~P U  i^i  Fin ) ( A [,] R )  C_  U. y
) ) )
17165, 170syl5bi 209 . . . . . . . . . 10  |-  ( ph  ->  ( v  e.  S  ->  ( ( G  -  C )  <  v  ->  E. y  e.  ( ~P U  i^i  Fin ) ( A [,] R )  C_  U. y
) ) )
172171rexlimdv 2789 . . . . . . . . 9  |-  ( ph  ->  ( E. v  e.  S  ( G  -  C )  <  v  ->  E. y  e.  ( ~P U  i^i  Fin ) ( A [,] R )  C_  U. y
) )
17361, 172mpd 15 . . . . . . . 8  |-  ( ph  ->  E. y  e.  ( ~P U  i^i  Fin ) ( A [,] R )  C_  U. y
)
174 oveq2 6048 . . . . . . . . . . 11  |-  ( v  =  R  ->  ( A [,] v )  =  ( A [,] R
) )
175174sseq1d 3335 . . . . . . . . . 10  |-  ( v  =  R  ->  (
( A [,] v
)  C_  U. y  <->  ( A [,] R ) 
C_  U. y ) )
176175rexbidv 2687 . . . . . . . . 9  |-  ( v  =  R  ->  ( E. y  e.  ( ~P U  i^i  Fin )
( A [,] v
)  C_  U. y  <->  E. y  e.  ( ~P U  i^i  Fin )
( A [,] R
)  C_  U. y
) )
177 unieq 3984 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  U. z  =  U. y )
178177sseq2d 3336 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  (
( A [,] v
)  C_  U. z  <->  ( A [,] v ) 
C_  U. y ) )
179178cbvrexv 2893 . . . . . . . . . . . 12  |-  ( E. z  e.  ( ~P U  i^i  Fin )
( A [,] v
)  C_  U. z  <->  E. y  e.  ( ~P U  i^i  Fin )
( A [,] v
)  C_  U. y
)
18064, 179syl6bb 253 . . . . . . . . . . 11  |-  ( x  =  v  ->  ( E. z  e.  ( ~P U  i^i  Fin )
( A [,] x
)  C_  U. z  <->  E. y  e.  ( ~P U  i^i  Fin )
( A [,] v
)  C_  U. y
) )
181180cbvrabv 2915 . . . . . . . . . 10  |-  { x  e.  ( A [,] B
)  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }  =  { v  e.  ( A [,] B
)  |  E. y  e.  ( ~P U  i^i  Fin ) ( A [,] v )  C_  U. y }
1822, 181eqtri 2424 . . . . . . . . 9  |-  S  =  { v  e.  ( A [,] B )  |  E. y  e.  ( ~P U  i^i  Fin ) ( A [,] v )  C_  U. y }
183176, 182elrab2 3054 . . . . . . . 8  |-  ( R  e.  S  <->  ( R  e.  ( A [,] B
)  /\  E. y  e.  ( ~P U  i^i  Fin ) ( A [,] R )  C_  U. y
) )
18454, 173, 183sylanbrc 646 . . . . . . 7  |-  ( ph  ->  R  e.  S )
185 suprub 9925 . . . . . . 7  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. n  e.  RR  A. y  e.  S  y  <_  n )  /\  R  e.  S )  ->  R  <_  sup ( S ,  RR ,  <  ) )
1869, 19, 24, 184, 185syl31anc 1187 . . . . . 6  |-  ( ph  ->  R  <_  sup ( S ,  RR ,  <  ) )
187186, 1syl6breqr 4212 . . . . 5  |-  ( ph  ->  R  <_  G )
188 iftrue 3705 . . . . . . 7  |-  ( ( G  +  ( C  /  2 ) )  <_  B  ->  if ( ( G  +  ( C  /  2
) )  <_  B ,  ( G  +  ( C  /  2
) ) ,  B
)  =  ( G  +  ( C  / 
2 ) ) )
18935, 188syl5eq 2448 . . . . . 6  |-  ( ( G  +  ( C  /  2 ) )  <_  B  ->  R  =  ( G  +  ( C  /  2
) ) )
190189breq1d 4182 . . . . 5  |-  ( ( G  +  ( C  /  2 ) )  <_  B  ->  ( R  <_  G  <->  ( G  +  ( C  / 
2 ) )  <_  G ) )
191187, 190syl5ibcom 212 . . . 4  |-  ( ph  ->  ( ( G  +  ( C  /  2
) )  <_  B  ->  ( G  +  ( C  /  2 ) )  <_  G )
)
19234, 191mtod 170 . . 3  |-  ( ph  ->  -.  ( G  +  ( C  /  2
) )  <_  B
)
193 iffalse 3706 . . . 4  |-  ( -.  ( G  +  ( C  /  2 ) )  <_  B  ->  if ( ( G  +  ( C  /  2
) )  <_  B ,  ( G  +  ( C  /  2
) ) ,  B
)  =  B )
19435, 193syl5eq 2448 . . 3  |-  ( -.  ( G  +  ( C  /  2 ) )  <_  B  ->  R  =  B )
195192, 194syl 16 . 2  |-  ( ph  ->  R  =  B )
196195, 184eqeltrrd 2479 1  |-  ( ph  ->  B  e.  S )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   {crab 2670    u. cun 3278    i^i cin 3279    C_ wss 3280   (/)c0 3588   ifcif 3699   ~Pcpw 3759   {csn 3774   U.cuni 3975   class class class wbr 4172    X. cxp 4835   ran crn 4838    |` cres 4839    o. ccom 4841   ` cfv 5413  (class class class)co 6040   Fincfn 7068   supcsup 7403   RRcr 8945    + caddc 8949   RR*cxr 9075    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   2c2 10005   RR+crp 10568   (,)cioo 10872   [,]cicc 10875   abscabs 11994   ↾t crest 13603   topGenctg 13620   ballcbl 16643
This theorem is referenced by:  icccmplem3  18808
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-xadd 10667  df-ioo 10876  df-icc 10879  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652
  Copyright terms: Public domain W3C validator