MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblulm Structured version   Unicode version

Theorem iblulm 22669
Description: A uniform limit of integrable functions is integrable. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
itgulm.z  |-  Z  =  ( ZZ>= `  M )
itgulm.m  |-  ( ph  ->  M  e.  ZZ )
itgulm.f  |-  ( ph  ->  F : Z --> L^1 )
itgulm.u  |-  ( ph  ->  F ( ~~> u `  S ) G )
itgulm.s  |-  ( ph  ->  ( vol `  S
)  e.  RR )
Assertion
Ref Expression
iblulm  |-  ( ph  ->  G  e.  L^1 )

Proof of Theorem iblulm
Dummy variables  j 
k  r  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm.z . . . 4  |-  Z  =  ( ZZ>= `  M )
2 itgulm.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 itgulm.f . . . . . 6  |-  ( ph  ->  F : Z --> L^1 )
4 ffn 5737 . . . . . 6  |-  ( F : Z --> L^1 
->  F  Fn  Z
)
53, 4syl 16 . . . . 5  |-  ( ph  ->  F  Fn  Z )
6 itgulm.u . . . . 5  |-  ( ph  ->  F ( ~~> u `  S ) G )
7 ulmf2 22646 . . . . 5  |-  ( ( F  Fn  Z  /\  F ( ~~> u `  S ) G )  ->  F : Z --> ( CC  ^m  S ) )
85, 6, 7syl2anc 661 . . . 4  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
9 eqidd 2468 . . . 4  |-  ( (
ph  /\  ( k  e.  Z  /\  x  e.  S ) )  -> 
( ( F `  k ) `  x
)  =  ( ( F `  k ) `
 x ) )
10 eqidd 2468 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  ( G `  x )  =  ( G `  x ) )
11 1rp 11236 . . . . 5  |-  1  e.  RR+
1211a1i 11 . . . 4  |-  ( ph  ->  1  e.  RR+ )
131, 2, 8, 9, 10, 6, 12ulmi 22648 . . 3  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. x  e.  S  ( abs `  ( ( ( F `  k ) `
 x )  -  ( G `  x ) ) )  <  1
)
141r19.2uz 13164 . . 3  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1  ->  E. k  e.  Z  A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1 )
1513, 14syl 16 . 2  |-  ( ph  ->  E. k  e.  Z  A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1 )
16 ulmcl 22643 . . . . . . 7  |-  ( F ( ~~> u `  S
) G  ->  G : S --> CC )
176, 16syl 16 . . . . . 6  |-  ( ph  ->  G : S --> CC )
1817adantr 465 . . . . 5  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  G : S --> CC )
1918feqmptd 5927 . . . 4  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  G  =  ( z  e.  S  |->  ( G `  z ) ) )
208ffvelrnda 6032 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  ( CC  ^m  S
) )
21 elmapi 7452 . . . . . . . . 9  |-  ( ( F `  k )  e.  ( CC  ^m  S )  ->  ( F `  k ) : S --> CC )
2220, 21syl 16 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k ) : S --> CC )
2322adantrr 716 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( F `  k ) : S --> CC )
2423ffvelrnda 6032 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1 ) )  /\  z  e.  S
)  ->  ( ( F `  k ) `  z )  e.  CC )
2518ffvelrnda 6032 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1 ) )  /\  z  e.  S
)  ->  ( G `  z )  e.  CC )
2624, 25nncand 9947 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1 ) )  /\  z  e.  S
)  ->  ( (
( F `  k
) `  z )  -  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  =  ( G `  z ) )
2726mpteq2dva 4539 . . . 4  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) )  =  ( z  e.  S  |->  ( G `
 z ) ) )
2819, 27eqtr4d 2511 . . 3  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  G  =  ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) ) )
2923feqmptd 5927 . . . . 5  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( F `  k )  =  ( z  e.  S  |->  ( ( F `
 k ) `  z ) ) )
303ffvelrnda 6032 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  L^1 )
3130adantrr 716 . . . . 5  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( F `  k )  e.  L^1 )
3229, 31eqeltrrd 2556 . . . 4  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
z  e.  S  |->  ( ( F `  k
) `  z )
)  e.  L^1 )
3324, 25subcld 9942 . . . 4  |-  ( ( ( ph  /\  (
k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1 ) )  /\  z  e.  S
)  ->  ( (
( F `  k
) `  z )  -  ( G `  z ) )  e.  CC )
34 ulmscl 22641 . . . . . . . . 9  |-  ( F ( ~~> u `  S
) G  ->  S  e.  _V )
356, 34syl 16 . . . . . . . 8  |-  ( ph  ->  S  e.  _V )
3635adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  S  e.  _V )
3736, 24, 25, 29, 19offval2 6551 . . . . . 6  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
( F `  k
)  oF  -  G )  =  ( z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) ) )
38 iblmbf 22042 . . . . . . . 8  |-  ( ( F `  k )  e.  L^1  ->  ( F `  k )  e. MblFn )
3931, 38syl 16 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( F `  k )  e. MblFn )
40 iblmbf 22042 . . . . . . . . . . 11  |-  ( x  e.  L^1  ->  x  e. MblFn )
4140ssriv 3513 . . . . . . . . . 10  |-  L^1 
C_ MblFn
42 fss 5745 . . . . . . . . . 10  |-  ( ( F : Z --> L^1 
/\  L^1  C_ MblFn )  ->  F : Z -->MblFn )
433, 41, 42sylancl 662 . . . . . . . . 9  |-  ( ph  ->  F : Z -->MblFn )
441, 2, 43, 6mbfulm 22668 . . . . . . . 8  |-  ( ph  ->  G  e. MblFn )
4544adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  G  e. MblFn )
4639, 45mbfsub 21937 . . . . . 6  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
( F `  k
)  oF  -  G )  e. MblFn )
4737, 46eqeltrrd 2556 . . . . 5  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) )  e. MblFn )
48 eqid 2467 . . . . . . . . 9  |-  ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  =  ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )
4933, 48fmptd 6056 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) ) : S --> CC )
50 fdm 5741 . . . . . . . 8  |-  ( ( z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) ) : S --> CC  ->  dom  ( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  =  S )
5149, 50syl 16 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  dom  ( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  =  S )
5251fveq2d 5876 . . . . . 6  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( vol `  dom  ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) )  =  ( vol `  S ) )
53 itgulm.s . . . . . . 7  |-  ( ph  ->  ( vol `  S
)  e.  RR )
5453adantr 465 . . . . . 6  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( vol `  S )  e.  RR )
5552, 54eqeltrd 2555 . . . . 5  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( vol `  dom  ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) )  e.  RR )
56 1re 9607 . . . . . 6  |-  1  e.  RR
5722ffvelrnda 6032 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( F `  k
) `  x )  e.  CC )
5817adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  Z )  ->  G : S --> CC )
5958ffvelrnda 6032 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  ( G `  x )  e.  CC )
6057, 59subcld 9942 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( ( F `  k ) `  x
)  -  ( G `
 x ) )  e.  CC )
6160abscld 13247 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  ( abs `  ( ( ( F `  k ) `
 x )  -  ( G `  x ) ) )  e.  RR )
62 ltle 9685 . . . . . . . . . . 11  |-  ( ( ( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) )  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) )  <  1  -> 
( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) )  <_  1 ) )
6361, 56, 62sylancl 662 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) )  <  1  -> 
( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) )  <_  1 ) )
64 fveq2 5872 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  (
( F `  k
) `  z )  =  ( ( F `
 k ) `  x ) )
65 fveq2 5872 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  ( G `  z )  =  ( G `  x ) )
6664, 65oveq12d 6313 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
( ( F `  k ) `  z
)  -  ( G `
 z ) )  =  ( ( ( F `  k ) `
 x )  -  ( G `  x ) ) )
67 ovex 6320 . . . . . . . . . . . . . 14  |-  ( ( ( F `  k
) `  x )  -  ( G `  x ) )  e. 
_V
6866, 48, 67fvmpt 5957 . . . . . . . . . . . . 13  |-  ( x  e.  S  ->  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
)  =  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )
6968adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
)  =  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )
7069fveq2d 5876 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) `
 x ) )  =  ( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) ) )
7170breq1d 4463 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( abs `  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
) )  <_  1  <->  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <_  1 ) )
7263, 71sylibrd 234 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) )  <  1  -> 
( abs `  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
) )  <_  1
) )
7372ralimdva 2875 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1  ->  A. x  e.  S  ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  1
) )
7473impr 619 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  A. x  e.  S  ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  1
)
7551raleqdv 3069 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( A. x  e.  dom  ( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  1  <->  A. x  e.  S  ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) ) `  x ) )  <_  1 ) )
7674, 75mpbird 232 . . . . . 6  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  A. x  e.  dom  ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  1
)
77 breq2 4457 . . . . . . . 8  |-  ( r  =  1  ->  (
( abs `  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
) )  <_  r  <->  ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) ) `  x ) )  <_  1 ) )
7877ralbidv 2906 . . . . . . 7  |-  ( r  =  1  ->  ( A. x  e.  dom  ( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  r  <->  A. x  e.  dom  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) ) ( abs `  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
) )  <_  1
) )
7978rspcev 3219 . . . . . 6  |-  ( ( 1  e.  RR  /\  A. x  e.  dom  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) ) ( abs `  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
) )  <_  1
)  ->  E. r  e.  RR  A. x  e. 
dom  ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  r
)
8056, 76, 79sylancr 663 . . . . 5  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  E. r  e.  RR  A. x  e. 
dom  ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  r
)
81 bddibl 22114 . . . . 5  |-  ( ( ( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  e. MblFn  /\  ( vol `  dom  ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) )  e.  RR  /\  E. r  e.  RR  A. x  e.  dom  ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) ( abs `  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
) )  <_  r
)  ->  ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  e.  L^1 )
8247, 55, 80, 81syl3anc 1228 . . . 4  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) )  e.  L^1 )
8324, 32, 33, 82iblsub 22096 . . 3  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) )  e.  L^1 )
8428, 83eqeltrd 2555 . 2  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  G  e.  L^1 )
8515, 84rexlimddv 2963 1  |-  ( ph  ->  G  e.  L^1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   E.wrex 2818   _Vcvv 3118    C_ wss 3481   class class class wbr 4453    |-> cmpt 4511   dom cdm 5005    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6295    oFcof 6533    ^m cmap 7432   CCcc 9502   RRcr 9503   1c1 9505    < clt 9640    <_ cle 9641    - cmin 9817   ZZcz 10876   ZZ>=cuz 11094   RR+crp 11232   abscabs 13047   volcvol 21743  MblFncmbf 21891   L^1cibl 21894   ~~> uculm 22638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cc 8827  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-addf 9583  ax-mulf 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-disj 4424  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-ofr 6536  df-om 6696  df-1st 6795  df-2nd 6796  df-supp 6914  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-omul 7147  df-er 7323  df-map 7434  df-pm 7435  df-ixp 7482  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fsupp 7842  df-fi 7883  df-sup 7913  df-oi 7947  df-card 8332  df-acn 8335  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-ioo 11545  df-ioc 11546  df-ico 11547  df-icc 11548  df-fz 11685  df-fzo 11805  df-fl 11909  df-mod 11977  df-seq 12088  df-exp 12147  df-hash 12386  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-limsup 13274  df-clim 13291  df-rlim 13292  df-sum 13489  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-mulr 14586  df-starv 14587  df-sca 14588  df-vsca 14589  df-ip 14590  df-tset 14591  df-ple 14592  df-ds 14594  df-unif 14595  df-hom 14596  df-cco 14597  df-rest 14695  df-topn 14696  df-0g 14714  df-gsum 14715  df-topgen 14716  df-pt 14717  df-prds 14720  df-xrs 14774  df-qtop 14779  df-imas 14780  df-xps 14782  df-mre 14858  df-mrc 14859  df-acs 14861  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15840  df-mulg 15932  df-cntz 16227  df-cmn 16673  df-psmet 18281  df-xmet 18282  df-met 18283  df-bl 18284  df-mopn 18285  df-cnfld 18291  df-top 19268  df-bases 19270  df-topon 19271  df-topsp 19272  df-cn 19596  df-cnp 19597  df-cmp 19755  df-tx 19931  df-hmeo 20124  df-xms 20691  df-ms 20692  df-tms 20693  df-cncf 21250  df-ovol 21744  df-vol 21745  df-mbf 21896  df-itg1 21897  df-itg2 21898  df-ibl 21899  df-0p 21945  df-ulm 22639
This theorem is referenced by:  itgulm  22670  itgulm2  22671
  Copyright terms: Public domain W3C validator