MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblulm Structured version   Unicode version

Theorem iblulm 23360
Description: A uniform limit of integrable functions is integrable. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
itgulm.z  |-  Z  =  ( ZZ>= `  M )
itgulm.m  |-  ( ph  ->  M  e.  ZZ )
itgulm.f  |-  ( ph  ->  F : Z --> L^1 )
itgulm.u  |-  ( ph  ->  F ( ~~> u `  S ) G )
itgulm.s  |-  ( ph  ->  ( vol `  S
)  e.  RR )
Assertion
Ref Expression
iblulm  |-  ( ph  ->  G  e.  L^1 )

Proof of Theorem iblulm
Dummy variables  j 
k  r  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm.z . . . 4  |-  Z  =  ( ZZ>= `  M )
2 itgulm.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 itgulm.f . . . . . 6  |-  ( ph  ->  F : Z --> L^1 )
4 ffn 5746 . . . . . 6  |-  ( F : Z --> L^1 
->  F  Fn  Z
)
53, 4syl 17 . . . . 5  |-  ( ph  ->  F  Fn  Z )
6 itgulm.u . . . . 5  |-  ( ph  ->  F ( ~~> u `  S ) G )
7 ulmf2 23337 . . . . 5  |-  ( ( F  Fn  Z  /\  F ( ~~> u `  S ) G )  ->  F : Z --> ( CC  ^m  S ) )
85, 6, 7syl2anc 665 . . . 4  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
9 eqidd 2423 . . . 4  |-  ( (
ph  /\  ( k  e.  Z  /\  x  e.  S ) )  -> 
( ( F `  k ) `  x
)  =  ( ( F `  k ) `
 x ) )
10 eqidd 2423 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  ( G `  x )  =  ( G `  x ) )
11 1rp 11313 . . . . 5  |-  1  e.  RR+
1211a1i 11 . . . 4  |-  ( ph  ->  1  e.  RR+ )
131, 2, 8, 9, 10, 6, 12ulmi 23339 . . 3  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. x  e.  S  ( abs `  ( ( ( F `  k ) `
 x )  -  ( G `  x ) ) )  <  1
)
141r19.2uz 13414 . . 3  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1  ->  E. k  e.  Z  A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1 )
1513, 14syl 17 . 2  |-  ( ph  ->  E. k  e.  Z  A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1 )
16 ulmcl 23334 . . . . . . 7  |-  ( F ( ~~> u `  S
) G  ->  G : S --> CC )
176, 16syl 17 . . . . . 6  |-  ( ph  ->  G : S --> CC )
1817adantr 466 . . . . 5  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  G : S --> CC )
1918feqmptd 5934 . . . 4  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  G  =  ( z  e.  S  |->  ( G `  z ) ) )
208ffvelrnda 6037 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  ( CC  ^m  S
) )
21 elmapi 7504 . . . . . . . . 9  |-  ( ( F `  k )  e.  ( CC  ^m  S )  ->  ( F `  k ) : S --> CC )
2220, 21syl 17 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k ) : S --> CC )
2322adantrr 721 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( F `  k ) : S --> CC )
2423ffvelrnda 6037 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1 ) )  /\  z  e.  S
)  ->  ( ( F `  k ) `  z )  e.  CC )
2518ffvelrnda 6037 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1 ) )  /\  z  e.  S
)  ->  ( G `  z )  e.  CC )
2624, 25nncand 9998 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1 ) )  /\  z  e.  S
)  ->  ( (
( F `  k
) `  z )  -  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  =  ( G `  z ) )
2726mpteq2dva 4510 . . . 4  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) )  =  ( z  e.  S  |->  ( G `
 z ) ) )
2819, 27eqtr4d 2466 . . 3  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  G  =  ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) ) )
2923feqmptd 5934 . . . . 5  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( F `  k )  =  ( z  e.  S  |->  ( ( F `
 k ) `  z ) ) )
303ffvelrnda 6037 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  L^1 )
3130adantrr 721 . . . . 5  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( F `  k )  e.  L^1 )
3229, 31eqeltrrd 2508 . . . 4  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
z  e.  S  |->  ( ( F `  k
) `  z )
)  e.  L^1 )
3324, 25subcld 9993 . . . 4  |-  ( ( ( ph  /\  (
k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1 ) )  /\  z  e.  S
)  ->  ( (
( F `  k
) `  z )  -  ( G `  z ) )  e.  CC )
34 ulmscl 23332 . . . . . . . . 9  |-  ( F ( ~~> u `  S
) G  ->  S  e.  _V )
356, 34syl 17 . . . . . . . 8  |-  ( ph  ->  S  e.  _V )
3635adantr 466 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  S  e.  _V )
3736, 24, 25, 29, 19offval2 6562 . . . . . 6  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
( F `  k
)  oF  -  G )  =  ( z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) ) )
38 iblmbf 22723 . . . . . . . 8  |-  ( ( F `  k )  e.  L^1  ->  ( F `  k )  e. MblFn )
3931, 38syl 17 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( F `  k )  e. MblFn )
40 iblmbf 22723 . . . . . . . . . . 11  |-  ( x  e.  L^1  ->  x  e. MblFn )
4140ssriv 3468 . . . . . . . . . 10  |-  L^1 
C_ MblFn
42 fss 5754 . . . . . . . . . 10  |-  ( ( F : Z --> L^1 
/\  L^1  C_ MblFn )  ->  F : Z -->MblFn )
433, 41, 42sylancl 666 . . . . . . . . 9  |-  ( ph  ->  F : Z -->MblFn )
441, 2, 43, 6mbfulm 23359 . . . . . . . 8  |-  ( ph  ->  G  e. MblFn )
4544adantr 466 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  G  e. MblFn )
4639, 45mbfsub 22616 . . . . . 6  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
( F `  k
)  oF  -  G )  e. MblFn )
4737, 46eqeltrrd 2508 . . . . 5  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) )  e. MblFn )
48 eqid 2422 . . . . . . . 8  |-  ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  =  ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )
4948, 33dmmptd 5726 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  dom  ( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  =  S )
5049fveq2d 5885 . . . . . 6  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( vol `  dom  ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) )  =  ( vol `  S ) )
51 itgulm.s . . . . . . 7  |-  ( ph  ->  ( vol `  S
)  e.  RR )
5251adantr 466 . . . . . 6  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( vol `  S )  e.  RR )
5350, 52eqeltrd 2507 . . . . 5  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( vol `  dom  ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) )  e.  RR )
54 1re 9649 . . . . . 6  |-  1  e.  RR
5522ffvelrnda 6037 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( F `  k
) `  x )  e.  CC )
5617adantr 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  Z )  ->  G : S --> CC )
5756ffvelrnda 6037 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  ( G `  x )  e.  CC )
5855, 57subcld 9993 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( ( F `  k ) `  x
)  -  ( G `
 x ) )  e.  CC )
5958abscld 13497 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  ( abs `  ( ( ( F `  k ) `
 x )  -  ( G `  x ) ) )  e.  RR )
60 ltle 9729 . . . . . . . . . . 11  |-  ( ( ( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) )  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) )  <  1  -> 
( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) )  <_  1 ) )
6159, 54, 60sylancl 666 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) )  <  1  -> 
( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) )  <_  1 ) )
62 fveq2 5881 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  (
( F `  k
) `  z )  =  ( ( F `
 k ) `  x ) )
63 fveq2 5881 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  ( G `  z )  =  ( G `  x ) )
6462, 63oveq12d 6323 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
( ( F `  k ) `  z
)  -  ( G `
 z ) )  =  ( ( ( F `  k ) `
 x )  -  ( G `  x ) ) )
65 ovex 6333 . . . . . . . . . . . . . 14  |-  ( ( ( F `  k
) `  x )  -  ( G `  x ) )  e. 
_V
6664, 48, 65fvmpt 5964 . . . . . . . . . . . . 13  |-  ( x  e.  S  ->  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
)  =  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )
6766adantl 467 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
)  =  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )
6867fveq2d 5885 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) `
 x ) )  =  ( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) ) )
6968breq1d 4433 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( abs `  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
) )  <_  1  <->  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <_  1 ) )
7061, 69sylibrd 237 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) )  <  1  -> 
( abs `  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
) )  <_  1
) )
7170ralimdva 2830 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1  ->  A. x  e.  S  ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  1
) )
7271impr 623 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  A. x  e.  S  ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  1
)
7349raleqdv 3028 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( A. x  e.  dom  ( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  1  <->  A. x  e.  S  ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) ) `  x ) )  <_  1 ) )
7472, 73mpbird 235 . . . . . 6  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  A. x  e.  dom  ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  1
)
75 breq2 4427 . . . . . . . 8  |-  ( r  =  1  ->  (
( abs `  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
) )  <_  r  <->  ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) ) `  x ) )  <_  1 ) )
7675ralbidv 2861 . . . . . . 7  |-  ( r  =  1  ->  ( A. x  e.  dom  ( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  r  <->  A. x  e.  dom  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) ) ( abs `  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
) )  <_  1
) )
7776rspcev 3182 . . . . . 6  |-  ( ( 1  e.  RR  /\  A. x  e.  dom  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) ) ( abs `  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
) )  <_  1
)  ->  E. r  e.  RR  A. x  e. 
dom  ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  r
)
7854, 74, 77sylancr 667 . . . . 5  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  E. r  e.  RR  A. x  e. 
dom  ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  r
)
79 bddibl 22795 . . . . 5  |-  ( ( ( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  e. MblFn  /\  ( vol `  dom  ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) )  e.  RR  /\  E. r  e.  RR  A. x  e.  dom  ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) ( abs `  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
) )  <_  r
)  ->  ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  e.  L^1 )
8047, 53, 78, 79syl3anc 1264 . . . 4  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) )  e.  L^1 )
8124, 32, 33, 80iblsub 22777 . . 3  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) )  e.  L^1 )
8228, 81eqeltrd 2507 . 2  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  G  e.  L^1 )
8315, 82rexlimddv 2918 1  |-  ( ph  ->  G  e.  L^1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872   A.wral 2771   E.wrex 2772   _Vcvv 3080    C_ wss 3436   class class class wbr 4423    |-> cmpt 4482   dom cdm 4853    Fn wfn 5596   -->wf 5597   ` cfv 5601  (class class class)co 6305    oFcof 6543    ^m cmap 7483   CCcc 9544   RRcr 9545   1c1 9547    < clt 9682    <_ cle 9683    - cmin 9867   ZZcz 10944   ZZ>=cuz 11166   RR+crp 11309   abscabs 13297   volcvol 22413  MblFncmbf 22570   L^1cibl 22573   ~~> uculm 23329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-inf2 8155  ax-cc 8872  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623  ax-pre-sup 9624  ax-addf 9625  ax-mulf 9626
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-iin 4302  df-disj 4395  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-ofr 6546  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-2o 7194  df-oadd 7197  df-omul 7198  df-er 7374  df-map 7485  df-pm 7486  df-ixp 7534  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-fsupp 7893  df-fi 7934  df-sup 7965  df-inf 7966  df-oi 8034  df-card 8381  df-acn 8384  df-cda 8605  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-7 10680  df-8 10681  df-9 10682  df-10 10683  df-n0 10877  df-z 10945  df-dec 11059  df-uz 11167  df-q 11272  df-rp 11310  df-xneg 11416  df-xadd 11417  df-xmul 11418  df-ioo 11646  df-ioc 11647  df-ico 11648  df-icc 11649  df-fz 11792  df-fzo 11923  df-fl 12034  df-mod 12103  df-seq 12220  df-exp 12279  df-hash 12522  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-limsup 13525  df-clim 13551  df-rlim 13552  df-sum 13752  df-struct 15122  df-ndx 15123  df-slot 15124  df-base 15125  df-sets 15126  df-ress 15127  df-plusg 15202  df-mulr 15203  df-starv 15204  df-sca 15205  df-vsca 15206  df-ip 15207  df-tset 15208  df-ple 15209  df-ds 15211  df-unif 15212  df-hom 15213  df-cco 15214  df-rest 15320  df-topn 15321  df-0g 15339  df-gsum 15340  df-topgen 15341  df-pt 15342  df-prds 15345  df-xrs 15399  df-qtop 15405  df-imas 15406  df-xps 15409  df-mre 15491  df-mrc 15492  df-acs 15494  df-mgm 16487  df-sgrp 16526  df-mnd 16536  df-submnd 16582  df-mulg 16675  df-cntz 16970  df-cmn 17431  df-psmet 18961  df-xmet 18962  df-met 18963  df-bl 18964  df-mopn 18965  df-cnfld 18970  df-top 19919  df-bases 19920  df-topon 19921  df-topsp 19922  df-cn 20241  df-cnp 20242  df-cmp 20400  df-tx 20575  df-hmeo 20768  df-xms 21333  df-ms 21334  df-tms 21335  df-cncf 21908  df-ovol 22414  df-vol 22416  df-mbf 22575  df-itg1 22576  df-itg2 22577  df-ibl 22578  df-0p 22626  df-ulm 23330
This theorem is referenced by:  itgulm  23361  itgulm2  23362
  Copyright terms: Public domain W3C validator