MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblre Structured version   Unicode version

Theorem iblre 22625
Description: Integrability of a real function. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypothesis
Ref Expression
iblrelem.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
Assertion
Ref Expression
iblre  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e.  L^1 
/\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L^1 ) ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem iblre
StepHypRef Expression
1 iblrelem.1 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
21mbfposb 22483 . . . 4  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  <->  ( ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn  /\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn ) ) )
3 ifan 3952 . . . . . . . . 9  |-  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 )
43mpteq2i 4500 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  B ,  B , 
0 ) ,  0 ) )
54fveq2i 5875 . . . . . . 7  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  B ,  B , 
0 ) ,  0 ) ) )
65eleq1i 2497 . . . . . 6  |-  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR  <->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  B ,  B , 
0 ) ,  0 ) ) )  e.  RR )
7 ifan 3952 . . . . . . . . 9  |-  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 )
87mpteq2i 4500 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) )
98fveq2i 5875 . . . . . . 7  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) ) )
109eleq1i 2497 . . . . . 6  |-  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 ) ) )  e.  RR  <->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) ) )  e.  RR )
116, 10anbi12i 701 . . . . 5  |-  ( ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 ) ) )  e.  RR )  <-> 
( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  B ,  B , 
0 ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) ) )  e.  RR ) )
1211a1i 11 . . . 4  |-  ( ph  ->  ( ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 ) ) )  e.  RR )  <-> 
( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  B ,  B , 
0 ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) ) )  e.  RR ) ) )
132, 12anbi12d 715 . . 3  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  e. MblFn  /\  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )  e.  RR ) )  <->  ( (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn  /\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn )  /\  (
( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) ) )  e.  RR ) ) ) )
14 3anass 986 . . 3  |-  ( ( ( x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )  e.  RR ) 
<->  ( ( x  e.  A  |->  B )  e. MblFn  /\  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 ) ) )  e.  RR ) ) )
15 an4 831 . . 3  |-  ( ( ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  B ,  B , 
0 ) ,  0 ) ) )  e.  RR )  /\  (
( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) ) )  e.  RR ) )  <-> 
( ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e. MblFn  /\  (
x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn )  /\  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  B ,  B , 
0 ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) ) )  e.  RR ) ) )
1613, 14, 153bitr4g 291 . 2  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 ) ) )  e.  RR )  <-> 
( ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 ) ) )  e.  RR )  /\  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) ) )  e.  RR ) ) ) )
171iblrelem 22622 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )  e.  RR ) ) )
18 0re 9632 . . . . 5  |-  0  e.  RR
19 ifcl 3948 . . . . 5  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  B ,  B , 
0 )  e.  RR )
201, 18, 19sylancl 666 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  RR )
21 max1 11469 . . . . 5  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  0  <_  if (
0  <_  B ,  B ,  0 ) )
2218, 1, 21sylancr 667 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  B ,  B , 
0 ) )
2320, 22iblpos 22624 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e.  L^1  <->  ( (
x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 ) ) )  e.  RR ) ) )
241renegcld 10035 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  -u B  e.  RR )
25 ifcl 3948 . . . . 5  |-  ( (
-u B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
2624, 18, 25sylancl 666 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
27 max1 11469 . . . . 5  |-  ( ( 0  e.  RR  /\  -u B  e.  RR )  ->  0  <_  if ( 0  <_  -u B ,  -u B ,  0 ) )
2818, 24, 27sylancr 667 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  -u B ,  -u B ,  0 ) )
2926, 28iblpos 22624 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L^1  <-> 
( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) ) )  e.  RR ) ) )
3023, 29anbi12d 715 . 2  |-  ( ph  ->  ( ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e.  L^1 
/\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L^1 )  <->  ( ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 ) ) )  e.  RR )  /\  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) ) )  e.  RR ) ) ) )
3116, 17, 303bitr4d 288 1  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e.  L^1 
/\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L^1 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    e. wcel 1867   ifcif 3906   class class class wbr 4417    |-> cmpt 4475   ` cfv 5592   RRcr 9527   0cc0 9528    <_ cle 9665   -ucneg 9850  MblFncmbf 22446   S.2citg2 22448   L^1cibl 22449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-inf2 8137  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605  ax-pre-sup 9606  ax-addf 9607
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-int 4250  df-iun 4295  df-disj 4389  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-se 4805  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-isom 5601  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6536  df-ofr 6537  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-1o 7181  df-2o 7182  df-oadd 7185  df-er 7362  df-map 7473  df-pm 7474  df-en 7569  df-dom 7570  df-sdom 7571  df-fin 7572  df-sup 7953  df-inf 7954  df-oi 8016  df-card 8363  df-cda 8587  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-div 10259  df-nn 10599  df-2 10657  df-3 10658  df-n0 10859  df-z 10927  df-uz 11149  df-q 11254  df-rp 11292  df-xadd 11399  df-ioo 11628  df-ico 11630  df-icc 11631  df-fz 11772  df-fzo 11903  df-fl 12014  df-seq 12200  df-exp 12259  df-hash 12502  df-cj 13130  df-re 13131  df-im 13132  df-sqrt 13266  df-abs 13267  df-clim 13519  df-sum 13720  df-xmet 18891  df-met 18892  df-ovol 22290  df-vol 22292  df-mbf 22451  df-itg1 22452  df-itg2 22453  df-ibl 22454  df-0p 22502
This theorem is referenced by:  iblneg  22634  itgneg  22635  itgaddlem2  22655  itgmulc2lem2  22664  itgaddnclem2  31705  itgmulc2nclem2  31713
  Copyright terms: Public domain W3C validator