MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblpos Structured version   Unicode version

Theorem iblpos 21931
Description: Integrability of a nonnegative function. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
iblrelem.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
iblpos.2  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  B )
Assertion
Ref Expression
iblpos  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR ) ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem iblpos
StepHypRef Expression
1 iblrelem.1 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
21iblrelem 21929 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )  e.  RR ) ) )
3 df-3an 975 . . 3  |-  ( ( ( x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )  e.  RR ) 
<->  ( ( ( x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR )  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )  e.  RR ) )
42, 3syl6bb 261 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
( x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR )  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )  e.  RR ) ) )
5 iblpos.2 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  B )
61, 5iblposlem 21930 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )  =  0 )
7 0re 9592 . . . 4  |-  0  e.  RR
86, 7syl6eqel 2563 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )  e.  RR )
98biantrud 507 . 2  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR )  <-> 
( ( ( x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR )  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )  e.  RR ) ) )
105ex 434 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  ->  0  <_  B )
)
1110pm4.71rd 635 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  <->  ( 0  <_  B  /\  x  e.  A )
) )
12 ancom 450 . . . . . . . 8  |-  ( ( 0  <_  B  /\  x  e.  A )  <->  ( x  e.  A  /\  0  <_  B ) )
1311, 12syl6rbb 262 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  /\  0  <_  B )  <->  x  e.  A ) )
1413ifbid 3961 . . . . . 6  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  if ( x  e.  A ,  B , 
0 ) )
1514mpteq2dv 4534 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )
1615fveq2d 5868 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
1716eleq1d 2536 . . 3  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR  <->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR ) )
1817anbi2d 703 . 2  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR )  <-> 
( ( x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR ) ) )
194, 9, 183bitr2d 281 1  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    e. wcel 1767   ifcif 3939   class class class wbr 4447    |-> cmpt 4505   ` cfv 5586   RRcr 9487   0cc0 9488    <_ cle 9625   -ucneg 9802  MblFncmbf 21755   S.2citg2 21757   L^1cibl 21758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-ofr 6523  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-q 11179  df-rp 11217  df-xadd 11315  df-ioo 11529  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-seq 12071  df-exp 12130  df-hash 12368  df-cj 12889  df-re 12890  df-im 12891  df-sqrt 13025  df-abs 13026  df-clim 13267  df-sum 13465  df-xmet 18180  df-met 18181  df-ovol 21608  df-vol 21609  df-mbf 21760  df-itg1 21761  df-itg2 21762  df-ibl 21763  df-0p 21809
This theorem is referenced by:  iblre  21932  itgposval  21934  itgreval  21935  itgaddlem1  21961  iblabs  21967  iblabsr  21968  iblmulc2  21969  itgmulc2lem1  21970  bddmulibl  21977  itgcn  21981  itgaddnclem1  29648  iblabsnc  29654  itgmulc2nclem1  29656  ftc1anclem2  29666  ftc1anclem4  29668  ftc1anclem5  29669
  Copyright terms: Public domain W3C validator