MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblmulc2 Structured version   Unicode version

Theorem iblmulc2 22421
Description: Multiply an integral by a constant. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgmulc2.1  |-  ( ph  ->  C  e.  CC )
itgmulc2.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgmulc2.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
Assertion
Ref Expression
iblmulc2  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e.  L^1 )
Distinct variable groups:    x, A    x, C    ph, x    x, V
Allowed substitution hint:    B( x)

Proof of Theorem iblmulc2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 itgmulc2.1 . . 3  |-  ( ph  ->  C  e.  CC )
2 itgmulc2.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
3 itgmulc2.3 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
4 iblmbf 22358 . . . 4  |-  ( ( x  e.  A  |->  B )  e.  L^1 
->  ( x  e.  A  |->  B )  e. MblFn )
53, 4syl 17 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
61, 2, 5mbfmulc2 22254 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e. MblFn )
7 ifan 3930 . . . . . 6  |-  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
81adantr 463 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
95, 2mbfmptcl 22228 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
108, 9mulcld 9566 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  ( C  x.  B )  e.  CC )
1110adantlr 713 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  ( C  x.  B )  e.  CC )
12 elfzelz 11659 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
1312ad2antlr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  k  e.  ZZ )
14 ax-icn 9501 . . . . . . . . . . . . . . 15  |-  _i  e.  CC
15 ine0 9953 . . . . . . . . . . . . . . 15  |-  _i  =/=  0
16 expclz 12145 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  e.  CC )
1714, 15, 16mp3an12 1316 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  (
_i ^ k )  e.  CC )
1813, 17syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
_i ^ k )  e.  CC )
19 expne0i 12152 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  =/=  0 )
2014, 15, 19mp3an12 1316 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  (
_i ^ k )  =/=  0 )
2113, 20syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
_i ^ k )  =/=  0 )
2211, 18, 21divcld 10281 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
( C  x.  B
)  /  ( _i
^ k ) )  e.  CC )
2322recld 13083 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) )  e.  RR )
24 0re 9546 . . . . . . . . . . 11  |-  0  e.  RR
25 ifcl 3926 . . . . . . . . . . 11  |-  ( ( ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 )  e.  RR )
2623, 24, 25sylancl 660 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
2726rexrd 9593 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  e.  RR* )
28 max1 11357 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) )  e.  RR )  -> 
0  <_  if (
0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )
2924, 23, 28sylancr 661 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  0  <_  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) )
30 elxrge0 11600 . . . . . . . . 9  |-  ( if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,] +oo )  <->  ( if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  e.  RR*  /\  0  <_  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ) )
3127, 29, 30sylanbrc 662 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,] +oo ) )
32 0e0iccpnf 11602 . . . . . . . . 9  |-  0  e.  ( 0 [,] +oo )
3332a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,] +oo ) )
3431, 33ifclda 3916 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  e.  ( 0 [,] +oo ) )
3534adantr 463 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  e.  ( 0 [,] +oo ) )
367, 35syl5eqel 2494 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  e.  ( 0 [,] +oo ) )
37 eqid 2402 . . . . 5  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )
3836, 37fmptd 5989 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
39 reex 9533 . . . . . . . . . . 11  |-  RR  e.  _V
4039a1i 11 . . . . . . . . . 10  |-  ( ph  ->  RR  e.  _V )
411abscld 13323 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  C
)  e.  RR )
4241adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  ( abs `  C )  e.  RR )
439abscld 13323 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  RR )
449absge0d 13331 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  B
) )
45 elrege0 11598 . . . . . . . . . . . . 13  |-  ( ( abs `  B )  e.  ( 0 [,) +oo )  <->  ( ( abs `  B )  e.  RR  /\  0  <_  ( abs `  B ) ) )
4643, 44, 45sylanbrc 662 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  ( 0 [,) +oo ) )
47 0e0icopnf 11601 . . . . . . . . . . . . 13  |-  0  e.  ( 0 [,) +oo )
4847a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,) +oo ) )
4946, 48ifclda 3916 . . . . . . . . . . 11  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
5049adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  B
) ,  0 )  e.  ( 0 [,) +oo ) )
51 fconstmpt 4986 . . . . . . . . . . 11  |-  ( RR 
X.  { ( abs `  C ) } )  =  ( x  e.  RR  |->  ( abs `  C
) )
5251a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( RR  X.  {
( abs `  C
) } )  =  ( x  e.  RR  |->  ( abs `  C ) ) )
53 eqidd 2403 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )
5440, 42, 50, 52, 53offval2 6494 . . . . . . . . 9  |-  ( ph  ->  ( ( RR  X.  { ( abs `  C
) } )  oF  x.  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )  =  ( x  e.  RR  |->  ( ( abs `  C
)  x.  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) ) )
55 ovif2 6317 . . . . . . . . . . 11  |-  ( ( abs `  C )  x.  if ( x  e.  A ,  ( abs `  B ) ,  0 ) )  =  if ( x  e.  A ,  ( ( abs `  C
)  x.  ( abs `  B ) ) ,  ( ( abs `  C
)  x.  0 ) )
568, 9absmuld 13341 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( C  x.  B ) )  =  ( ( abs `  C
)  x.  ( abs `  B ) ) )
5756ifeq1da 3914 . . . . . . . . . . . 12  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B
) ) ,  ( ( abs `  C
)  x.  0 ) )  =  if ( x  e.  A , 
( ( abs `  C
)  x.  ( abs `  B ) ) ,  ( ( abs `  C
)  x.  0 ) ) )
5841recnd 9572 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( abs `  C
)  e.  CC )
5958mul01d 9733 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( abs `  C
)  x.  0 )  =  0 )
6059ifeq2d 3903 . . . . . . . . . . . 12  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B
) ) ,  ( ( abs `  C
)  x.  0 ) )  =  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
6157, 60eqtr3d 2445 . . . . . . . . . . 11  |-  ( ph  ->  if ( x  e.  A ,  ( ( abs `  C )  x.  ( abs `  B
) ) ,  ( ( abs `  C
)  x.  0 ) )  =  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
6255, 61syl5eq 2455 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  C
)  x.  if ( x  e.  A , 
( abs `  B
) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
6362mpteq2dv 4481 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  RR  |->  ( ( abs `  C
)  x.  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )
6454, 63eqtrd 2443 . . . . . . . 8  |-  ( ph  ->  ( ( RR  X.  { ( abs `  C
) } )  oF  x.  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )
6564fveq2d 5809 . . . . . . 7  |-  ( ph  ->  ( S.2 `  (
( RR  X.  {
( abs `  C
) } )  oF  x.  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) ) )  =  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) ) )
66 eqid 2402 . . . . . . . . 9  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )
6750, 66fmptd 5989 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
682, 3iblabs 22419 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 )
6943, 44iblpos 22383 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 
<->  ( ( x  e.  A  |->  ( abs `  B
) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  e.  RR ) ) )
7068, 69mpbid 210 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  ( abs `  B
) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  e.  RR ) )
7170simprd 461 . . . . . . . 8  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) )  e.  RR )
72 abscl 13167 . . . . . . . . . 10  |-  ( C  e.  CC  ->  ( abs `  C )  e.  RR )
73 absge0 13176 . . . . . . . . . 10  |-  ( C  e.  CC  ->  0  <_  ( abs `  C
) )
74 elrege0 11598 . . . . . . . . . 10  |-  ( ( abs `  C )  e.  ( 0 [,) +oo )  <->  ( ( abs `  C )  e.  RR  /\  0  <_  ( abs `  C ) ) )
7572, 73, 74sylanbrc 662 . . . . . . . . 9  |-  ( C  e.  CC  ->  ( abs `  C )  e.  ( 0 [,) +oo ) )
761, 75syl 17 . . . . . . . 8  |-  ( ph  ->  ( abs `  C
)  e.  ( 0 [,) +oo ) )
7767, 71, 76itg2mulc 22338 . . . . . . 7  |-  ( ph  ->  ( S.2 `  (
( RR  X.  {
( abs `  C
) } )  oF  x.  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) ) )  =  ( ( abs `  C
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) ) ) )
7865, 77eqtr3d 2445 . . . . . 6  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )  =  ( ( abs `  C
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) ) ) )
7941, 71remulcld 9574 . . . . . 6  |-  ( ph  ->  ( ( abs `  C
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) ) )  e.  RR )
8078, 79eqeltrd 2490 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )  e.  RR )
8180adantr 463 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B ) ) ,  0 ) ) )  e.  RR )
8210abscld 13323 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( C  x.  B ) )  e.  RR )
8382rexrd 9593 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( C  x.  B ) )  e. 
RR* )
8410absge0d 13331 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  ( C  x.  B )
) )
85 elxrge0 11600 . . . . . . . . . 10  |-  ( ( abs `  ( C  x.  B ) )  e.  ( 0 [,] +oo )  <->  ( ( abs `  ( C  x.  B
) )  e.  RR*  /\  0  <_  ( abs `  ( C  x.  B
) ) ) )
8683, 84, 85sylanbrc 662 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( C  x.  B ) )  e.  ( 0 [,] +oo ) )
8732a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,] +oo ) )
8886, 87ifclda 3916 . . . . . . . 8  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B
) ) ,  0 )  e.  ( 0 [,] +oo ) )
8988adantr 463 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 )  e.  ( 0 [,] +oo ) )
90 eqid 2402 . . . . . . 7  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
9189, 90fmptd 5989 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
9291adantr 463 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
9322releabsd 13338 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) )  <_  ( abs `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) )
9411, 18, 21absdivd 13342 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  ( abs `  ( ( C  x.  B )  / 
( _i ^ k
) ) )  =  ( ( abs `  ( C  x.  B )
)  /  ( abs `  ( _i ^ k
) ) ) )
95 elfznn0 11743 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  NN0 )
9695ad2antlr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  k  e.  NN0 )
97 absexp 13193 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  (
_i ^ k ) )  =  ( ( abs `  _i ) ^ k ) )
9814, 96, 97sylancr 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  ( abs `  ( _i ^
k ) )  =  ( ( abs `  _i ) ^ k ) )
99 absi 13175 . . . . . . . . . . . . . . . . . 18  |-  ( abs `  _i )  =  1
10099oveq1i 6244 . . . . . . . . . . . . . . . . 17  |-  ( ( abs `  _i ) ^ k )  =  ( 1 ^ k
)
101 1exp 12149 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ZZ  ->  (
1 ^ k )  =  1 )
10213, 101syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
1 ^ k )  =  1 )
103100, 102syl5eq 2455 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
( abs `  _i ) ^ k )  =  1 )
10498, 103eqtrd 2443 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  ( abs `  ( _i ^
k ) )  =  1 )
105104oveq2d 6250 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
( abs `  ( C  x.  B )
)  /  ( abs `  ( _i ^ k
) ) )  =  ( ( abs `  ( C  x.  B )
)  /  1 ) )
10682recnd 9572 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( C  x.  B ) )  e.  CC )
107106adantlr 713 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  ( abs `  ( C  x.  B ) )  e.  CC )
108107div1d 10273 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
( abs `  ( C  x.  B )
)  /  1 )  =  ( abs `  ( C  x.  B )
) )
10994, 105, 1083eqtrd 2447 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  ( abs `  ( ( C  x.  B )  / 
( _i ^ k
) ) )  =  ( abs `  ( C  x.  B )
) )
11093, 109breqtrd 4418 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) )  <_  ( abs `  ( C  x.  B )
) )
11184adantlr 713 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  0  <_  ( abs `  ( C  x.  B )
) )
112 breq1 4397 . . . . . . . . . . . . 13  |-  ( ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) )  =  if ( 0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  -> 
( ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) )  <_  ( abs `  ( C  x.  B ) )  <->  if (
0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  <_ 
( abs `  ( C  x.  B )
) ) )
113 breq1 4397 . . . . . . . . . . . . 13  |-  ( 0  =  if ( 0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  -> 
( 0  <_  ( abs `  ( C  x.  B ) )  <->  if (
0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  <_ 
( abs `  ( C  x.  B )
) ) )
114112, 113ifboth 3920 . . . . . . . . . . . 12  |-  ( ( ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) )  <_  ( abs `  ( C  x.  B
) )  /\  0  <_  ( abs `  ( C  x.  B )
) )  ->  if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  <_  ( abs `  ( C  x.  B
) ) )
115110, 111, 114syl2anc 659 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  <_  ( abs `  ( C  x.  B
) ) )
116 iftrue 3890 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )
117116adantl 464 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )
118 iftrue 3890 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 )  =  ( abs `  ( C  x.  B )
) )
119118adantl 464 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 )  =  ( abs `  ( C  x.  B )
) )
120115, 117, 1193brtr4d 4424 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  <_  if (
x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
121120ex 432 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  <_  if (
x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) ) )
122 0le0 10586 . . . . . . . . . . 11  |-  0  <_  0
123122a1i 11 . . . . . . . . . 10  |-  ( -.  x  e.  A  -> 
0  <_  0 )
124 iffalse 3893 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  =  0 )
125 iffalse 3893 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 )  =  0 )
126123, 124, 1253brtr4d 4424 . . . . . . . . 9  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  <_  if (
x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
127121, 126pm2.61d1 159 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  <_  if (
x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
1287, 127syl5eqbr 4427 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  <_  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) )
129128ralrimivw 2818 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  0 )  <_  if ( x  e.  A ,  ( abs `  ( C  x.  B ) ) ,  0 ) )
13039a1i 11 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  RR  e.  _V )
13189adantlr 713 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 )  e.  ( 0 [,] +oo ) )
132 eqidd 2403 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  0 ) ) )
133 eqidd 2403 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) ) )
134130, 36, 131, 132, 133ofrfval2 6495 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )  oR  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) )  <->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  <_  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )
135129, 134mpbird 232 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )  oR  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )
136 itg2le 22330 . . . . 5  |-  ( ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )  oR  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B ) ) ,  0 ) ) ) )
13738, 92, 135, 136syl3anc 1230 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B ) ) ,  0 ) ) ) )
138 itg2lecl 22329 . . . 4  |-  ( ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 ) ) )  e.  RR )
13938, 81, 137, 138syl3anc 1230 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  0 ) ) )  e.  RR )
140139ralrimiva 2817 . 2  |-  ( ph  ->  A. k  e.  ( 0 ... 3 ) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR )
141 eqidd 2403 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  0 ) ) )
142 eqidd 2403 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) )  =  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) )
143141, 142, 10isibl2 22357 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  ( C  x.  B ) )  e.  L^1  <->  ( (
x  e.  A  |->  ( C  x.  B ) )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR ) ) )
1446, 140, 143mpbir2and 923 1  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e.  L^1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   A.wral 2753   _Vcvv 3058   ifcif 3884   {csn 3971   class class class wbr 4394    |-> cmpt 4452    X. cxp 4940   -->wf 5521   ` cfv 5525  (class class class)co 6234    oFcof 6475    oRcofr 6476   CCcc 9440   RRcr 9441   0cc0 9442   1c1 9443   _ici 9444    x. cmul 9447   +oocpnf 9575   RR*cxr 9577    <_ cle 9579    / cdiv 10167   3c3 10547   NN0cn0 10756   ZZcz 10825   [,)cico 11502   [,]cicc 11503   ...cfz 11643   ^cexp 12120   Recre 12986   abscabs 13123  MblFncmbf 22207   S.2citg2 22209   L^1cibl 22210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-inf2 8011  ax-cc 8767  ax-cnex 9498  ax-resscn 9499  ax-1cn 9500  ax-icn 9501  ax-addcl 9502  ax-addrcl 9503  ax-mulcl 9504  ax-mulrcl 9505  ax-mulcom 9506  ax-addass 9507  ax-mulass 9508  ax-distr 9509  ax-i2m1 9510  ax-1ne0 9511  ax-1rid 9512  ax-rnegex 9513  ax-rrecex 9514  ax-cnre 9515  ax-pre-lttri 9516  ax-pre-lttrn 9517  ax-pre-ltadd 9518  ax-pre-mulgt0 9519  ax-pre-sup 9520  ax-addf 9521  ax-mulf 9522
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-iin 4273  df-disj 4366  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-ord 4824  df-on 4825  df-lim 4826  df-suc 4827  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-isom 5534  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-of 6477  df-ofr 6478  df-om 6639  df-1st 6738  df-2nd 6739  df-supp 6857  df-recs 6999  df-rdg 7033  df-1o 7087  df-2o 7088  df-oadd 7091  df-omul 7092  df-er 7268  df-map 7379  df-pm 7380  df-ixp 7428  df-en 7475  df-dom 7476  df-sdom 7477  df-fin 7478  df-fsupp 7784  df-fi 7825  df-sup 7855  df-oi 7889  df-card 8272  df-acn 8275  df-cda 8500  df-pnf 9580  df-mnf 9581  df-xr 9582  df-ltxr 9583  df-le 9584  df-sub 9763  df-neg 9764  df-div 10168  df-nn 10497  df-2 10555  df-3 10556  df-4 10557  df-5 10558  df-6 10559  df-7 10560  df-8 10561  df-9 10562  df-10 10563  df-n0 10757  df-z 10826  df-dec 10940  df-uz 11046  df-q 11146  df-rp 11184  df-xneg 11289  df-xadd 11290  df-xmul 11291  df-ioo 11504  df-ioc 11505  df-ico 11506  df-icc 11507  df-fz 11644  df-fzo 11768  df-fl 11879  df-seq 12062  df-exp 12121  df-hash 12360  df-cj 12988  df-re 12989  df-im 12990  df-sqrt 13124  df-abs 13125  df-clim 13367  df-rlim 13368  df-sum 13565  df-struct 14735  df-ndx 14736  df-slot 14737  df-base 14738  df-sets 14739  df-ress 14740  df-plusg 14814  df-mulr 14815  df-starv 14816  df-sca 14817  df-vsca 14818  df-ip 14819  df-tset 14820  df-ple 14821  df-ds 14823  df-unif 14824  df-hom 14825  df-cco 14826  df-rest 14929  df-topn 14930  df-0g 14948  df-gsum 14949  df-topgen 14950  df-pt 14951  df-prds 14954  df-xrs 15008  df-qtop 15013  df-imas 15014  df-xps 15016  df-mre 15092  df-mrc 15093  df-acs 15095  df-mgm 16088  df-sgrp 16127  df-mnd 16137  df-submnd 16183  df-mulg 16276  df-cntz 16571  df-cmn 17016  df-psmet 18623  df-xmet 18624  df-met 18625  df-bl 18626  df-mopn 18627  df-cnfld 18633  df-top 19583  df-bases 19585  df-topon 19586  df-topsp 19587  df-cn 19913  df-cnp 19914  df-cmp 20072  df-tx 20247  df-hmeo 20440  df-xms 21007  df-ms 21008  df-tms 21009  df-cncf 21566  df-ovol 22060  df-vol 22061  df-mbf 22212  df-itg1 22213  df-itg2 22214  df-ibl 22215  df-0p 22261
This theorem is referenced by:  itgmulc2lem1  22422  itgmulc2lem2  22423  itgmulc2  22424  itgabs  22425  fourierdlem83  37322  fourierdlem95  37334  sqwvfoura  37361  sqwvfourb  37362
  Copyright terms: Public domain W3C validator