MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibllem Structured version   Unicode version

Theorem ibllem 21370
Description: Conditioned equality theorem for the if statement. (Contributed by Mario Carneiro, 31-Jul-2014.)
Hypothesis
Ref Expression
ibllem.1  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
Assertion
Ref Expression
ibllem  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )

Proof of Theorem ibllem
StepHypRef Expression
1 ibllem.1 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
21breq2d 4407 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
0  <_  B  <->  0  <_  C ) )
32pm5.32da 641 . . 3  |-  ( ph  ->  ( ( x  e.  A  /\  0  <_  B )  <->  ( x  e.  A  /\  0  <_  C ) ) )
43ifbid 3914 . 2  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  if ( ( x  e.  A  /\  0  <_  C ) ,  B ,  0 ) )
51adantrr 716 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  0  <_  C ) )  ->  B  =  C )
65ifeq1da 3922 . 2  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  B ,  0 )  =  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )
74, 6eqtrd 2493 1  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   ifcif 3894   class class class wbr 4395   0cc0 9388    <_ cle 9525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-rab 2805  df-v 3074  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-sn 3981  df-pr 3983  df-op 3987  df-br 4396
This theorem is referenced by:  isibl  21371  isibl2  21372  iblitg  21374  iblcnlem1  21393  iblcnlem  21394  itgcnlem  21395  iblrelem  21396  itgrevallem1  21400  itgeqa  21419
  Copyright terms: Public domain W3C validator