MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblconst Structured version   Unicode version

Theorem iblconst 22390
Description: A constant function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.)
Assertion
Ref Expression
iblconst  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( A  X.  { B } )  e.  L^1 )

Proof of Theorem iblconst
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconstmpt 5032 . 2  |-  ( A  X.  { B }
)  =  ( x  e.  A  |->  B )
2 mbfconst 22208 . . . . 5  |-  ( ( A  e.  dom  vol  /\  B  e.  CC )  ->  ( A  X.  { B } )  e. MblFn
)
323adant2 1013 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( A  X.  { B } )  e. MblFn )
41, 3syl5eqelr 2547 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( x  e.  A  |->  B )  e. MblFn )
5 ifan 3975 . . . . . . . 8  |-  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( B  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
65mpteq2i 4522 . . . . . . 7  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( B  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
76fveq2i 5851 . . . . . 6  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  =  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) ) )
8 simpl1 997 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  A  e.  dom  vol )
9 simpl2 998 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( vol `  A
)  e.  RR )
10 simpl3 999 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  B  e.  CC )
11 elfzelz 11691 . . . . . . . . . . . . 13  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
1211adantl 464 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  k  e.  ZZ )
13 ax-icn 9540 . . . . . . . . . . . . 13  |-  _i  e.  CC
14 ine0 9988 . . . . . . . . . . . . 13  |-  _i  =/=  0
15 expclz 12173 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  e.  CC )
1613, 14, 15mp3an12 1312 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  (
_i ^ k )  e.  CC )
1712, 16syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( _i ^
k )  e.  CC )
18 expne0i 12180 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  =/=  0 )
1913, 14, 18mp3an12 1312 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  (
_i ^ k )  =/=  0 )
2012, 19syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( _i ^
k )  =/=  0
)
2110, 17, 20divcld 10316 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( B  / 
( _i ^ k
) )  e.  CC )
2221recld 13109 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( Re `  ( B  /  (
_i ^ k ) ) )  e.  RR )
23 0re 9585 . . . . . . . . 9  |-  0  e.  RR
24 ifcl 3971 . . . . . . . . 9  |-  ( ( ( Re `  ( B  /  ( _i ^
k ) ) )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  (
Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
2522, 23, 24sylancl 660 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  if ( 0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 )  e.  RR )
26 max1 11389 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( Re `  ( B  /  ( _i ^
k ) ) )  e.  RR )  -> 
0  <_  if (
0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 ) )
2723, 22, 26sylancr 661 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  0  <_  if ( 0  <_  (
Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) )
28 elrege0 11630 . . . . . . . 8  |-  ( if ( 0  <_  (
Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,) +oo )  <->  ( if ( 0  <_  (
Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 ) ) )
2925, 27, 28sylanbrc 662 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  if ( 0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 )  e.  ( 0 [,) +oo ) )
30 itg2const 22313 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  if ( 0  <_  (
Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,) +oo ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) ) )  =  ( if ( 0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  x.  ( vol `  A ) ) )
318, 9, 29, 30syl3anc 1226 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) ) )  =  ( if ( 0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  x.  ( vol `  A ) ) )
327, 31syl5eq 2507 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  =  ( if ( 0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 )  x.  ( vol `  A
) ) )
3325, 9remulcld 9613 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( if ( 0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 )  x.  ( vol `  A
) )  e.  RR )
3432, 33eqeltrd 2542 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
3534ralrimiva 2868 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  A. k  e.  ( 0 ... 3 ) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
36 eqidd 2455 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )
37 eqidd 2455 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  x  e.  A
)  ->  ( Re `  ( B  /  (
_i ^ k ) ) )  =  ( Re `  ( B  /  ( _i ^
k ) ) ) )
38 simpl3 999 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  x  e.  A
)  ->  B  e.  CC )
3936, 37, 38isibl2 22339 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) ) )
404, 35, 39mpbir2and 920 . 2  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( x  e.  A  |->  B )  e.  L^1 )
411, 40syl5eqel 2546 1  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( A  X.  { B } )  e.  L^1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   ifcif 3929   {csn 4016   class class class wbr 4439    |-> cmpt 4497    X. cxp 4986   dom cdm 4988   ` cfv 5570  (class class class)co 6270   CCcc 9479   RRcr 9480   0cc0 9481   _ici 9483    x. cmul 9486   +oocpnf 9614    <_ cle 9618    / cdiv 10202   3c3 10582   ZZcz 10860   [,)cico 11534   ...cfz 11675   ^cexp 12148   Recre 13012   volcvol 22041  MblFncmbf 22189   S.2citg2 22191   L^1cibl 22192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-disj 4411  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-ofr 6514  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-q 11184  df-rp 11222  df-xadd 11322  df-ioo 11536  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-fl 11910  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-clim 13393  df-sum 13591  df-xmet 18607  df-met 18608  df-ovol 22042  df-vol 22043  df-mbf 22194  df-itg1 22195  df-itg2 22196  df-ibl 22197  df-0p 22243
This theorem is referenced by:  itgconst  22391  bddibl  22412  ftc1lem4  22606  itgulm  22969  ftc1cnnclem  30328  iblconstmpt  31993  itgiccshift  32018  itgperiod  32019  itgsbtaddcnst  32020
  Copyright terms: Public domain W3C validator