MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblconst Structured version   Unicode version

Theorem iblconst 21431
Description: A constant function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.)
Assertion
Ref Expression
iblconst  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( A  X.  { B } )  e.  L^1 )

Proof of Theorem iblconst
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconstmpt 4993 . 2  |-  ( A  X.  { B }
)  =  ( x  e.  A  |->  B )
2 mbfconst 21249 . . . . 5  |-  ( ( A  e.  dom  vol  /\  B  e.  CC )  ->  ( A  X.  { B } )  e. MblFn
)
323adant2 1007 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( A  X.  { B } )  e. MblFn )
41, 3syl5eqelr 2547 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( x  e.  A  |->  B )  e. MblFn )
5 ifan 3946 . . . . . . . 8  |-  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( B  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
65mpteq2i 4486 . . . . . . 7  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( B  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
76fveq2i 5805 . . . . . 6  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  =  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) ) )
8 simpl1 991 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  A  e.  dom  vol )
9 simpl2 992 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( vol `  A
)  e.  RR )
10 simpl3 993 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  B  e.  CC )
11 elfzelz 11573 . . . . . . . . . . . . 13  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
1211adantl 466 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  k  e.  ZZ )
13 ax-icn 9455 . . . . . . . . . . . . 13  |-  _i  e.  CC
14 ine0 9894 . . . . . . . . . . . . 13  |-  _i  =/=  0
15 expclz 12010 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  e.  CC )
1613, 14, 15mp3an12 1305 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  (
_i ^ k )  e.  CC )
1712, 16syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( _i ^
k )  e.  CC )
18 expne0i 12016 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  =/=  0 )
1913, 14, 18mp3an12 1305 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  (
_i ^ k )  =/=  0 )
2012, 19syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( _i ^
k )  =/=  0
)
2110, 17, 20divcld 10221 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( B  / 
( _i ^ k
) )  e.  CC )
2221recld 12804 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( Re `  ( B  /  (
_i ^ k ) ) )  e.  RR )
23 0re 9500 . . . . . . . . 9  |-  0  e.  RR
24 ifcl 3942 . . . . . . . . 9  |-  ( ( ( Re `  ( B  /  ( _i ^
k ) ) )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  (
Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
2522, 23, 24sylancl 662 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  if ( 0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 )  e.  RR )
26 max1 11271 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( Re `  ( B  /  ( _i ^
k ) ) )  e.  RR )  -> 
0  <_  if (
0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 ) )
2723, 22, 26sylancr 663 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  0  <_  if ( 0  <_  (
Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) )
28 elrege0 11512 . . . . . . . 8  |-  ( if ( 0  <_  (
Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,) +oo )  <->  ( if ( 0  <_  (
Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 ) ) )
2925, 27, 28sylanbrc 664 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  if ( 0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 )  e.  ( 0 [,) +oo ) )
30 itg2const 21354 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  if ( 0  <_  (
Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,) +oo ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) ) )  =  ( if ( 0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  x.  ( vol `  A ) ) )
318, 9, 29, 30syl3anc 1219 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) ) )  =  ( if ( 0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  x.  ( vol `  A ) ) )
327, 31syl5eq 2507 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  =  ( if ( 0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 )  x.  ( vol `  A
) ) )
3325, 9remulcld 9528 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( if ( 0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 )  x.  ( vol `  A
) )  e.  RR )
3432, 33eqeltrd 2542 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
3534ralrimiva 2830 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  A. k  e.  ( 0 ... 3 ) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
36 eqidd 2455 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )
37 eqidd 2455 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  x  e.  A
)  ->  ( Re `  ( B  /  (
_i ^ k ) ) )  =  ( Re `  ( B  /  ( _i ^
k ) ) ) )
38 simpl3 993 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  x  e.  A
)  ->  B  e.  CC )
3936, 37, 38isibl2 21380 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) ) )
404, 35, 39mpbir2and 913 . 2  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( x  e.  A  |->  B )  e.  L^1 )
411, 40syl5eqel 2546 1  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( A  X.  { B } )  e.  L^1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   A.wral 2799   ifcif 3902   {csn 3988   class class class wbr 4403    |-> cmpt 4461    X. cxp 4949   dom cdm 4951   ` cfv 5529  (class class class)co 6203   CCcc 9394   RRcr 9395   0cc0 9396   _ici 9398    x. cmul 9401   +oocpnf 9529    <_ cle 9533    / cdiv 10107   3c3 10486   ZZcz 10760   [,)cico 11416   ...cfz 11557   ^cexp 11985   Recre 12707   volcvol 21082  MblFncmbf 21230   S.2citg2 21232   L^1cibl 21233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7961  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473  ax-pre-sup 9474  ax-addf 9475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-disj 4374  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-of 6433  df-ofr 6434  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-2o 7034  df-oadd 7037  df-er 7214  df-map 7329  df-pm 7330  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-sup 7805  df-oi 7838  df-card 8223  df-cda 8451  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-div 10108  df-nn 10437  df-2 10494  df-3 10495  df-n0 10694  df-z 10761  df-uz 10976  df-q 11068  df-rp 11106  df-xadd 11204  df-ioo 11418  df-ico 11420  df-icc 11421  df-fz 11558  df-fzo 11669  df-fl 11762  df-seq 11927  df-exp 11986  df-hash 12224  df-cj 12709  df-re 12710  df-im 12711  df-sqr 12845  df-abs 12846  df-clim 13087  df-sum 13285  df-xmet 17938  df-met 17939  df-ovol 21083  df-vol 21084  df-mbf 21235  df-itg1 21236  df-itg2 21237  df-ibl 21238  df-0p 21284
This theorem is referenced by:  itgconst  21432  bddibl  21453  ftc1lem4  21647  itgulm  22009  ftc1cnnclem  28633
  Copyright terms: Public domain W3C validator