MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblcnlem Structured version   Unicode version

Theorem iblcnlem 22744
Description: Expand out the forall in isibl2 22722. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypotheses
Ref Expression
itgcnlem.r  |-  R  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )
itgcnlem.s  |-  S  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) )
itgcnlem.t  |-  T  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )
itgcnlem.u  |-  U  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B
) ) ,  -u ( Im `  B ) ,  0 ) ) )
itgcnlem.v  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
Assertion
Ref Expression
iblcnlem  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  ( R  e.  RR  /\  S  e.  RR )  /\  ( T  e.  RR  /\  U  e.  RR ) ) ) )
Distinct variable groups:    x, A    ph, x    x, V
Allowed substitution hints:    B( x)    R( x)    S( x)    T( x)    U( x)

Proof of Theorem iblcnlem
StepHypRef Expression
1 iblmbf 22723 . . 3  |-  ( ( x  e.  A  |->  B )  e.  L^1 
->  ( x  e.  A  |->  B )  e. MblFn )
21a1i 11 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  ->  (
x  e.  A  |->  B )  e. MblFn ) )
3 simp1 1005 . . 3  |-  ( ( ( x  e.  A  |->  B )  e. MblFn  /\  ( R  e.  RR  /\  S  e.  RR )  /\  ( T  e.  RR  /\  U  e.  RR ) )  -> 
( x  e.  A  |->  B )  e. MblFn )
43a1i 11 . 2  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  e. MblFn  /\  ( R  e.  RR  /\  S  e.  RR )  /\  ( T  e.  RR  /\  U  e.  RR ) )  -> 
( x  e.  A  |->  B )  e. MblFn )
)
5 eqid 2422 . . . . . 6  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re
`  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )
6 eqid 2422 . . . . . 6  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )
7 eqid 2422 . . . . . 6  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im
`  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im
`  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )
8 eqid 2422 . . . . . 6  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )
9 0cn 9642 . . . . . . . 8  |-  0  e.  CC
109elimel 3973 . . . . . . 7  |-  if ( B  e.  CC ,  B ,  0 )  e.  CC
1110a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( B  e.  CC ,  B ,  0 )  e.  CC )
125, 6, 7, 8, 11iblcnlem1 22743 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  if ( B  e.  CC ,  B ,  0 ) )  e.  L^1  <->  ( (
x  e.  A  |->  if ( B  e.  CC ,  B ,  0 ) )  e. MblFn  /\  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re
`  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR )  /\  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR ) ) ) )
1312adantr 466 . . . 4  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( x  e.  A  |->  if ( B  e.  CC ,  B , 
0 ) )  e.  L^1  <->  ( (
x  e.  A  |->  if ( B  e.  CC ,  B ,  0 ) )  e. MblFn  /\  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re
`  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR )  /\  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR ) ) ) )
14 eqid 2422 . . . . . 6  |-  A  =  A
15 mbff 22581 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B )  e. MblFn  ->  ( x  e.  A  |->  B ) : dom  ( x  e.  A  |->  B ) --> CC )
16 eqid 2422 . . . . . . . . . . . 12  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
17 itgcnlem.v . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
1816, 17dmmptd 5726 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
1918feq2d 5733 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  A  |->  B ) : dom  ( x  e.  A  |->  B ) --> CC  <->  ( x  e.  A  |->  B ) : A --> CC ) )
2019biimpa 486 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  A  |->  B ) : dom  ( x  e.  A  |->  B ) --> CC )  ->  (
x  e.  A  |->  B ) : A --> CC )
2115, 20sylan2 476 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
x  e.  A  |->  B ) : A --> CC )
2216fmpt 6058 . . . . . . . 8  |-  ( A. x  e.  A  B  e.  CC  <->  ( x  e.  A  |->  B ) : A --> CC )
2321, 22sylibr 215 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  A. x  e.  A  B  e.  CC )
24 iftrue 3917 . . . . . . . 8  |-  ( B  e.  CC  ->  if ( B  e.  CC ,  B ,  0 )  =  B )
2524ralimi 2815 . . . . . . 7  |-  ( A. x  e.  A  B  e.  CC  ->  A. x  e.  A  if ( B  e.  CC ,  B ,  0 )  =  B )
2623, 25syl 17 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  A. x  e.  A  if ( B  e.  CC ,  B ,  0 )  =  B )
27 mpteq12 4503 . . . . . 6  |-  ( ( A  =  A  /\  A. x  e.  A  if ( B  e.  CC ,  B ,  0 )  =  B )  -> 
( x  e.  A  |->  if ( B  e.  CC ,  B , 
0 ) )  =  ( x  e.  A  |->  B ) )
2814, 26, 27sylancr 667 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
x  e.  A  |->  if ( B  e.  CC ,  B ,  0 ) )  =  ( x  e.  A  |->  B ) )
2928eleq1d 2491 . . . 4  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( x  e.  A  |->  if ( B  e.  CC ,  B , 
0 ) )  e.  L^1  <->  ( x  e.  A  |->  B )  e.  L^1 ) )
3028eleq1d 2491 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( x  e.  A  |->  if ( B  e.  CC ,  B , 
0 ) )  e. MblFn  <->  ( x  e.  A  |->  B )  e. MblFn ) )
31 eqid 2422 . . . . . . . . . 10  |-  RR  =  RR
3224imim2i 16 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  A  ->  B  e.  CC )  ->  ( x  e.  A  ->  if ( B  e.  CC ,  B , 
0 )  =  B ) )
3332imp 430 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  A  ->  B  e.  CC )  /\  x  e.  A
)  ->  if ( B  e.  CC ,  B ,  0 )  =  B )
3433fveq2d 5885 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  A  ->  B  e.  CC )  /\  x  e.  A
)  ->  ( Re `  if ( B  e.  CC ,  B , 
0 ) )  =  ( Re `  B
) )
3534ibllem 22720 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  ->  B  e.  CC )  ->  if ( ( x  e.  A  /\  0  <_  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Re `  B ) ) ,  ( Re `  B
) ,  0 ) )
3635a1d 26 . . . . . . . . . . . 12  |-  ( ( x  e.  A  ->  B  e.  CC )  ->  ( x  e.  RR  ->  if ( ( x  e.  A  /\  0  <_  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Re `  B ) ) ,  ( Re `  B
) ,  0 ) ) )
3736ralimi2 2812 . . . . . . . . . . 11  |-  ( A. x  e.  A  B  e.  CC  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Re `  B ) ) ,  ( Re `  B
) ,  0 ) )
3823, 37syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Re `  B ) ) ,  ( Re `  B
) ,  0 ) )
39 mpteq12 4503 . . . . . . . . . 10  |-  ( ( RR  =  RR  /\  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_ 
( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Re `  B ) ) ,  ( Re `  B
) ,  0 ) )  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  B ) ) ,  ( Re `  B ) ,  0 ) ) )
4031, 38, 39sylancr 667 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  B ) ) ,  ( Re `  B ) ,  0 ) ) )
4140fveq2d 5885 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  B ) ) ,  ( Re `  B ) ,  0 ) ) ) )
42 itgcnlem.r . . . . . . . 8  |-  R  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )
4341, 42syl6eqr 2481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  R )
4443eleq1d 2491 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re
`  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  <->  R  e.  RR ) )
4534negeqd 9876 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  A  ->  B  e.  CC )  /\  x  e.  A
)  ->  -u ( Re
`  if ( B  e.  CC ,  B ,  0 ) )  =  -u ( Re `  B ) )
4645ibllem 22720 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  ->  B  e.  CC )  ->  if ( ( x  e.  A  /\  0  <_ 
-u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B ) ) , 
-u ( Re `  B ) ,  0 ) )
4746a1d 26 . . . . . . . . . . . 12  |-  ( ( x  e.  A  ->  B  e.  CC )  ->  ( x  e.  RR  ->  if ( ( x  e.  A  /\  0  <_ 
-u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B ) ) , 
-u ( Re `  B ) ,  0 ) ) )
4847ralimi2 2812 . . . . . . . . . . 11  |-  ( A. x  e.  A  B  e.  CC  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B ) ) , 
-u ( Re `  B ) ,  0 ) )
4923, 48syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B ) ) , 
-u ( Re `  B ) ,  0 ) )
50 mpteq12 4503 . . . . . . . . . 10  |-  ( ( RR  =  RR  /\  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B ) ) , 
-u ( Re `  B ) ,  0 ) )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  B )
) ,  -u (
Re `  B ) ,  0 ) ) )
5131, 49, 50sylancr 667 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  B )
) ,  -u (
Re `  B ) ,  0 ) ) )
5251fveq2d 5885 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  B )
) ,  -u (
Re `  B ) ,  0 ) ) ) )
53 itgcnlem.s . . . . . . . 8  |-  S  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) )
5452, 53syl6eqr 2481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  S )
5554eleq1d 2491 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  <->  S  e.  RR ) )
5644, 55anbi12d 715 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR ) 
<->  ( R  e.  RR  /\  S  e.  RR ) ) )
5733fveq2d 5885 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  A  ->  B  e.  CC )  /\  x  e.  A
)  ->  ( Im `  if ( B  e.  CC ,  B , 
0 ) )  =  ( Im `  B
) )
5857ibllem 22720 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  ->  B  e.  CC )  ->  if ( ( x  e.  A  /\  0  <_  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Im `  B ) ) ,  ( Im `  B
) ,  0 ) )
5958a1d 26 . . . . . . . . . . . 12  |-  ( ( x  e.  A  ->  B  e.  CC )  ->  ( x  e.  RR  ->  if ( ( x  e.  A  /\  0  <_  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Im `  B ) ) ,  ( Im `  B
) ,  0 ) ) )
6059ralimi2 2812 . . . . . . . . . . 11  |-  ( A. x  e.  A  B  e.  CC  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Im `  B ) ) ,  ( Im `  B
) ,  0 ) )
6123, 60syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Im `  B ) ) ,  ( Im `  B
) ,  0 ) )
62 mpteq12 4503 . . . . . . . . . 10  |-  ( ( RR  =  RR  /\  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_ 
( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Im `  B ) ) ,  ( Im `  B
) ,  0 ) )  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im
`  B ) ) ,  ( Im `  B ) ,  0 ) ) )
6331, 61, 62sylancr 667 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im
`  B ) ) ,  ( Im `  B ) ,  0 ) ) )
6463fveq2d 5885 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im
`  B ) ) ,  ( Im `  B ) ,  0 ) ) ) )
65 itgcnlem.t . . . . . . . 8  |-  T  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )
6664, 65syl6eqr 2481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  T )
6766eleq1d 2491 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im
`  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im
`  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  <->  T  e.  RR ) )
6857negeqd 9876 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  A  ->  B  e.  CC )  /\  x  e.  A
)  ->  -u ( Im
`  if ( B  e.  CC ,  B ,  0 ) )  =  -u ( Im `  B ) )
6968ibllem 22720 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  ->  B  e.  CC )  ->  if ( ( x  e.  A  /\  0  <_ 
-u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B ) ) , 
-u ( Im `  B ) ,  0 ) )
7069a1d 26 . . . . . . . . . . . 12  |-  ( ( x  e.  A  ->  B  e.  CC )  ->  ( x  e.  RR  ->  if ( ( x  e.  A  /\  0  <_ 
-u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B ) ) , 
-u ( Im `  B ) ,  0 ) ) )
7170ralimi2 2812 . . . . . . . . . . 11  |-  ( A. x  e.  A  B  e.  CC  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B ) ) , 
-u ( Im `  B ) ,  0 ) )
7223, 71syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B ) ) , 
-u ( Im `  B ) ,  0 ) )
73 mpteq12 4503 . . . . . . . . . 10  |-  ( ( RR  =  RR  /\  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B ) ) , 
-u ( Im `  B ) ,  0 ) )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  B )
) ,  -u (
Im `  B ) ,  0 ) ) )
7431, 72, 73sylancr 667 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  B )
) ,  -u (
Im `  B ) ,  0 ) ) )
7574fveq2d 5885 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  B )
) ,  -u (
Im `  B ) ,  0 ) ) ) )
76 itgcnlem.u . . . . . . . 8  |-  U  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B
) ) ,  -u ( Im `  B ) ,  0 ) ) )
7775, 76syl6eqr 2481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  U )
7877eleq1d 2491 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  <->  U  e.  RR ) )
7967, 78anbi12d 715 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR ) 
<->  ( T  e.  RR  /\  U  e.  RR ) ) )
8030, 56, 793anbi123d 1335 . . . 4  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( ( x  e.  A  |->  if ( B  e.  CC ,  B ,  0 ) )  e. MblFn  /\  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR )  /\  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR ) )  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  ( R  e.  RR  /\  S  e.  RR )  /\  ( T  e.  RR  /\  U  e.  RR ) ) ) )
8113, 29, 803bitr3d 286 . . 3  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( x  e.  A  |->  B )  e.  L^1 
<->  ( ( x  e.  A  |->  B )  e. MblFn  /\  ( R  e.  RR  /\  S  e.  RR )  /\  ( T  e.  RR  /\  U  e.  RR ) ) ) )
8281ex 435 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  ( R  e.  RR  /\  S  e.  RR )  /\  ( T  e.  RR  /\  U  e.  RR ) ) ) ) )
832, 4, 82pm5.21ndd 355 1  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  ( R  e.  RR  /\  S  e.  RR )  /\  ( T  e.  RR  /\  U  e.  RR ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872   A.wral 2771   ifcif 3911   class class class wbr 4423    |-> cmpt 4482   dom cdm 4853   -->wf 5597   ` cfv 5601   CCcc 9544   RRcr 9545   0cc0 9546    <_ cle 9683   -ucneg 9868   Recre 13160   Imcim 13161  MblFncmbf 22570   S.2citg2 22572   L^1cibl 22573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-er 7374  df-pm 7486  df-en 7581  df-dom 7582  df-sdom 7583  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-n0 10877  df-z 10945  df-uz 11167  df-fz 11792  df-seq 12220  df-exp 12279  df-cj 13162  df-re 13163  df-im 13164  df-mbf 22575  df-ibl 22578
This theorem is referenced by:  itgcnlem  22745  iblrelem  22746  ibladd  22776  ibladdnc  31963
  Copyright terms: Public domain W3C validator