Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ibladdnclem Structured version   Unicode version

Theorem ibladdnclem 30255
Description: Lemma for ibladdnc 30256; cf ibladdlem 22352, whose fifth hypothesis is rendered unnecessary by the weakened hypotheses of itg2addnc 30253. (Contributed by Brendan Leahy, 31-Oct-2017.)
Hypotheses
Ref Expression
ibladdnclem.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
ibladdnclem.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
ibladdnclem.3  |-  ( (
ph  /\  x  e.  A )  ->  D  =  ( B  +  C ) )
ibladdnclem.4  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
ibladdnclem.6  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR )
ibladdnclem.7  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  e.  RR )
Assertion
Ref Expression
ibladdnclem  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  e.  RR )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    C( x)    D( x)

Proof of Theorem ibladdnclem
StepHypRef Expression
1 ifan 3990 . . . 4  |-  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )
2 ibladdnclem.3 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  D  =  ( B  +  C ) )
3 ibladdnclem.1 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
4 ibladdnclem.2 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
53, 4readdcld 9640 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  e.  RR )
62, 5eqeltrd 2545 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  D  e.  RR )
7 0re 9613 . . . . . . . . 9  |-  0  e.  RR
8 ifcl 3986 . . . . . . . . 9  |-  ( ( D  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  D ,  D , 
0 )  e.  RR )
96, 7, 8sylancl 662 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  D ,  D ,  0 )  e.  RR )
109rexrd 9660 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  D ,  D ,  0 )  e.  RR* )
11 max1 11411 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  D  e.  RR )  ->  0  <_  if (
0  <_  D ,  D ,  0 ) )
127, 6, 11sylancr 663 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  D ,  D , 
0 ) )
13 elxrge0 11654 . . . . . . 7  |-  ( if ( 0  <_  D ,  D ,  0 )  e.  ( 0 [,] +oo )  <->  ( if ( 0  <_  D ,  D ,  0 )  e.  RR*  /\  0  <_  if ( 0  <_  D ,  D , 
0 ) ) )
1410, 12, 13sylanbrc 664 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  D ,  D ,  0 )  e.  ( 0 [,] +oo ) )
15 0e0iccpnf 11656 . . . . . . 7  |-  0  e.  ( 0 [,] +oo )
1615a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,] +oo ) )
1714, 16ifclda 3976 . . . . 5  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )  e.  ( 0 [,] +oo ) )
1817adantr 465 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )  e.  ( 0 [,] +oo ) )
191, 18syl5eqel 2549 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  e.  ( 0 [,] +oo ) )
20 eqid 2457 . . 3  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )
2119, 20fmptd 6056 . 2  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) : RR --> ( 0 [,] +oo ) )
22 reex 9600 . . . . . . . 8  |-  RR  e.  _V
2322a1i 11 . . . . . . 7  |-  ( ph  ->  RR  e.  _V )
24 ifan 3990 . . . . . . . . 9  |-  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 )
25 ifcl 3986 . . . . . . . . . . 11  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  B ,  B , 
0 )  e.  RR )
263, 7, 25sylancl 662 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  RR )
277a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  RR )
2826, 27ifclda 3976 . . . . . . . . 9  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 )  e.  RR )
2924, 28syl5eqel 2549 . . . . . . . 8  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  RR )
3029adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  RR )
31 ifan 3990 . . . . . . . . 9  |-  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  C ,  C ,  0 ) ,  0 )
32 ifcl 3986 . . . . . . . . . . 11  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  C ,  C , 
0 )  e.  RR )
334, 7, 32sylancl 662 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  C ,  C ,  0 )  e.  RR )
3433, 27ifclda 3976 . . . . . . . . 9  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  C ,  C ,  0 ) ,  0 )  e.  RR )
3531, 34syl5eqel 2549 . . . . . . . 8  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  e.  RR )
3635adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  e.  RR )
37 eqidd 2458 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )
38 eqidd 2458 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )
3923, 30, 36, 37, 38offval2 6555 . . . . . 6  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  =  ( x  e.  RR  |->  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) )
40 iftrue 3950 . . . . . . . . 9  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )  =  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
41 ibar 504 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
0  <_  B  <->  ( x  e.  A  /\  0  <_  B ) ) )
4241ifbid 3966 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( 0  <_  B ,  B ,  0 )  =  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )
43 ibar 504 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
0  <_  C  <->  ( x  e.  A  /\  0  <_  C ) ) )
4443ifbid 3966 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( 0  <_  C ,  C ,  0 )  =  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )
4542, 44oveq12d 6314 . . . . . . . . 9  |-  ( x  e.  A  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  =  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )
4640, 45eqtr2d 2499 . . . . . . . 8  |-  ( x  e.  A  ->  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  if ( x  e.  A ,  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
47 00id 9772 . . . . . . . . 9  |-  ( 0  +  0 )  =  0
48 simpl 457 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  0  <_  B )  ->  x  e.  A )
4948con3i 135 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  -.  ( x  e.  A  /\  0  <_  B ) )
5049iffalsed 3955 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  0 )
51 simpl 457 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  0  <_  C )  ->  x  e.  A )
5251con3i 135 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  -.  ( x  e.  A  /\  0  <_  C ) )
5352iffalsed 3955 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  =  0 )
5450, 53oveq12d 6314 . . . . . . . . 9  |-  ( -.  x  e.  A  -> 
( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  ( 0  +  0 ) )
55 iffalse 3953 . . . . . . . . 9  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )  =  0 )
5647, 54, 553eqtr4a 2524 . . . . . . . 8  |-  ( -.  x  e.  A  -> 
( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )
5746, 56pm2.61i 164 . . . . . . 7  |-  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  if ( x  e.  A ,  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )
5857mpteq2i 4540 . . . . . 6  |-  ( x  e.  RR  |->  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )
5939, 58syl6eq 2514 . . . . 5  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) ) )
6059fveq2d 5876 . . . 4  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) ) ) )
61 ibladdnclem.4 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
6261, 3mbfdm2 22171 . . . . . . 7  |-  ( ph  ->  A  e.  dom  vol )
63 mblss 22068 . . . . . . 7  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
6462, 63syl 16 . . . . . 6  |-  ( ph  ->  A  C_  RR )
65 rembl 22077 . . . . . . 7  |-  RR  e.  dom  vol
6665a1i 11 . . . . . 6  |-  ( ph  ->  RR  e.  dom  vol )
6729adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  RR )
68 eldifn 3623 . . . . . . . . 9  |-  ( x  e.  ( RR  \  A )  ->  -.  x  e.  A )
6968adantl 466 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  -.  x  e.  A )
7069intnanrd 917 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  -.  (
x  e.  A  /\  0  <_  B ) )
7170iffalsed 3955 . . . . . 6  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  0 )
7242mpteq2ia 4539 . . . . . . 7  |-  ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  =  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )
733, 61mbfpos 22184 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn
)
7472, 73syl5eqelr 2550 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  e. MblFn )
7564, 66, 67, 71, 74mbfss 22179 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  e. MblFn )
76 max1 11411 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  0  <_  if (
0  <_  B ,  B ,  0 ) )
777, 3, 76sylancr 663 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  B ,  B , 
0 ) )
78 elrege0 11652 . . . . . . . . . 10  |-  ( if ( 0  <_  B ,  B ,  0 )  e.  ( 0 [,) +oo )  <->  ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  B ,  B , 
0 ) ) )
7926, 77, 78sylanbrc 664 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  ( 0 [,) +oo ) )
80 0e0icopnf 11655 . . . . . . . . . 10  |-  0  e.  ( 0 [,) +oo )
8180a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,) +oo ) )
8279, 81ifclda 3976 . . . . . . . 8  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 )  e.  ( 0 [,) +oo ) )
8324, 82syl5eqel 2549 . . . . . . 7  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  ( 0 [,) +oo ) )
8483adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  ( 0 [,) +oo ) )
85 eqid 2457 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )
8684, 85fmptd 6056 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) : RR --> ( 0 [,) +oo ) )
87 ibladdnclem.6 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR )
88 max1 11411 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  C  e.  RR )  ->  0  <_  if (
0  <_  C ,  C ,  0 ) )
897, 4, 88sylancr 663 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  C ,  C , 
0 ) )
90 elrege0 11652 . . . . . . . . . 10  |-  ( if ( 0  <_  C ,  C ,  0 )  e.  ( 0 [,) +oo )  <->  ( if ( 0  <_  C ,  C ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  C ,  C , 
0 ) ) )
9133, 89, 90sylanbrc 664 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  C ,  C ,  0 )  e.  ( 0 [,) +oo ) )
9291, 81ifclda 3976 . . . . . . . 8  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  C ,  C ,  0 ) ,  0 )  e.  ( 0 [,) +oo ) )
9331, 92syl5eqel 2549 . . . . . . 7  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  e.  ( 0 [,) +oo ) )
9493adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  e.  ( 0 [,) +oo ) )
95 eqid 2457 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )
9694, 95fmptd 6056 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) : RR --> ( 0 [,) +oo ) )
97 ibladdnclem.7 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  e.  RR )
9875, 86, 87, 96, 97itg2addnc 30253 . . . 4  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) ) )
9960, 98eqtr3d 2500 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  +  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) ) )
10087, 97readdcld 9640 . . 3  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) )  e.  RR )
10199, 100eqeltrd 2545 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )  e.  RR )
10226, 33readdcld 9640 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  RR )
103102rexrd 9660 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  RR* )
10426, 33, 77, 89addge0d 10149 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
105 elxrge0 11654 . . . . . . 7  |-  ( ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  ( 0 [,] +oo )  <->  ( ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  RR*  /\  0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ) )
106103, 104, 105sylanbrc 664 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  ( 0 [,] +oo ) )
107106, 16ifclda 3976 . . . . 5  |-  ( ph  ->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )  e.  ( 0 [,] +oo ) )
108107adantr 465 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 )  e.  ( 0 [,] +oo )
)
109 eqid 2457 . . . 4  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
110108, 109fmptd 6056 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
111 max2 11413 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  B  <_  if (
0  <_  B ,  B ,  0 ) )
1127, 3, 111sylancr 663 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  B  <_  if ( 0  <_  B ,  B , 
0 ) )
113 max2 11413 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  C  e.  RR )  ->  C  <_  if (
0  <_  C ,  C ,  0 ) )
1147, 4, 113sylancr 663 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  C  <_  if ( 0  <_  C ,  C , 
0 ) )
1153, 4, 26, 33, 112, 114le2addd 10191 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
1162, 115eqbrtrd 4476 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  D  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
117 breq1 4459 . . . . . . . . . . 11  |-  ( D  =  if ( 0  <_  D ,  D ,  0 )  -> 
( D  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  <-> 
if ( 0  <_  D ,  D , 
0 )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ) )
118 breq1 4459 . . . . . . . . . . 11  |-  ( 0  =  if ( 0  <_  D ,  D ,  0 )  -> 
( 0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  <-> 
if ( 0  <_  D ,  D , 
0 )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ) )
119117, 118ifboth 3980 . . . . . . . . . 10  |-  ( ( D  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  /\  0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )  ->  if (
0  <_  D ,  D ,  0 )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )
120116, 104, 119syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  D ,  D ,  0 )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )
121 iftrue 3950 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  =  if ( 0  <_  D ,  D ,  0 ) )
122121adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  =  if ( 0  <_  D ,  D ,  0 ) )
12340adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )  =  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
124120, 122, 1233brtr4d 4486 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  <_  if (
x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )
125124ex 434 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )
126 0le0 10646 . . . . . . . . 9  |-  0  <_  0
127126a1i 11 . . . . . . . 8  |-  ( -.  x  e.  A  -> 
0  <_  0 )
128 iffalse 3953 . . . . . . . 8  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  =  0 )
129127, 128, 553brtr4d 4486 . . . . . . 7  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  <_  if (
x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )
130125, 129pm2.61d1 159 . . . . . 6  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
1311, 130syl5eqbr 4489 . . . . 5  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
132131ralrimivw 2872 . . . 4  |-  ( ph  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
133 eqidd 2458 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )
134 eqidd 2458 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )
13523, 19, 108, 133, 134ofrfval2 6556 . . . 4  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  oR  <_ 
( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )  <->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )
136132, 135mpbird 232 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  oR  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )
137 itg2le 22272 . . 3  |-  ( ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  oR  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) ) )
13821, 110, 136, 137syl3anc 1228 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) ) )
139 itg2lecl 22271 . 2  |-  ( ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  e.  RR )
14021, 101, 138, 139syl3anc 1228 1  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  e.  RR )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   _Vcvv 3109    \ cdif 3468    C_ wss 3471   ifcif 3944   class class class wbr 4456    |-> cmpt 4515   dom cdm 5008   -->wf 5590   ` cfv 5594  (class class class)co 6296    oFcof 6537    oRcofr 6538   RRcr 9508   0cc0 9509    + caddc 9512   +oocpnf 9642   RR*cxr 9644    <_ cle 9646   [,)cico 11556   [,]cicc 11557   volcvol 22001  MblFncmbf 22149   S.2citg2 22151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-disj 4428  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-ofr 6540  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-ico 11560  df-icc 11561  df-fz 11698  df-fzo 11822  df-fl 11932  df-seq 12111  df-exp 12170  df-hash 12409  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-clim 13323  df-sum 13521  df-rest 14840  df-topgen 14861  df-psmet 18538  df-xmet 18539  df-met 18540  df-bl 18541  df-mopn 18542  df-top 19526  df-bases 19528  df-topon 19529  df-cmp 20014  df-ovol 22002  df-vol 22003  df-mbf 22154  df-itg1 22155  df-itg2 22156
This theorem is referenced by:  ibladdnc  30256
  Copyright terms: Public domain W3C validator