MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibladd Structured version   Unicode version

Theorem ibladd 22353
Description: Add two integrals over the same domain. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itgadd.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgadd.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
itgadd.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
itgadd.4  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
Assertion
Ref Expression
ibladd  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e.  L^1 )
Distinct variable groups:    x, A    x, V    ph, x
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem ibladd
StepHypRef Expression
1 itgadd.2 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
2 eqid 2457 . . . . . . . 8  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )
3 eqid 2457 . . . . . . . 8  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) )
4 eqid 2457 . . . . . . . 8  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )
5 eqid 2457 . . . . . . . 8  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B
) ) ,  -u ( Im `  B ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B
) ) ,  -u ( Im `  B ) ,  0 ) ) )
6 itgadd.1 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
72, 3, 4, 5, 6iblcnlem 22321 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  B ) ) ,  ( Re `  B ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) )  e.  RR )  /\  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  B )
) ,  -u (
Im `  B ) ,  0 ) ) )  e.  RR ) ) ) )
81, 7mpbid 210 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  /\  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  B )
) ,  -u (
Re `  B ) ,  0 ) ) )  e.  RR )  /\  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  B )
) ,  -u (
Im `  B ) ,  0 ) ) )  e.  RR ) ) )
98simp1d 1008 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
109, 6mbfdm2 22171 . . . 4  |-  ( ph  ->  A  e.  dom  vol )
11 itgadd.3 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
12 eqidd 2458 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B ) )
13 eqidd 2458 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C ) )
1410, 6, 11, 12, 13offval2 6555 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  B )  oF  +  ( x  e.  A  |->  C ) )  =  ( x  e.  A  |->  ( B  +  C ) ) )
15 itgadd.4 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
16 eqid 2457 . . . . . . 7  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  C
) ) ,  ( Re `  C ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  C
) ) ,  ( Re `  C ) ,  0 ) ) )
17 eqid 2457 . . . . . . 7  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  C
) ) ,  -u ( Re `  C ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  C
) ) ,  -u ( Re `  C ) ,  0 ) ) )
18 eqid 2457 . . . . . . 7  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  C
) ) ,  ( Im `  C ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  C
) ) ,  ( Im `  C ) ,  0 ) ) )
19 eqid 2457 . . . . . . 7  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  C
) ) ,  -u ( Im `  C ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  C
) ) ,  -u ( Im `  C ) ,  0 ) ) )
2016, 17, 18, 19, 11iblcnlem 22321 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e.  L^1  <->  ( (
x  e.  A  |->  C )  e. MblFn  /\  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  C ) ) ,  ( Re `  C ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  C
) ) ,  -u ( Re `  C ) ,  0 ) ) )  e.  RR )  /\  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  C
) ) ,  ( Im `  C ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  C )
) ,  -u (
Im `  C ) ,  0 ) ) )  e.  RR ) ) ) )
2115, 20mpbid 210 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e. MblFn  /\  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  C
) ) ,  ( Re `  C ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  C )
) ,  -u (
Re `  C ) ,  0 ) ) )  e.  RR )  /\  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  C
) ) ,  ( Im `  C ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  C )
) ,  -u (
Im `  C ) ,  0 ) ) )  e.  RR ) ) )
2221simp1d 1008 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
239, 22mbfadd 22194 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  B )  oF  +  ( x  e.  A  |->  C ) )  e. MblFn )
2414, 23eqeltrrd 2546 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e. MblFn )
259, 6mbfmptcl 22170 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
2625recld 13039 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
2722, 11mbfmptcl 22170 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
2827recld 13039 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  C )  e.  RR )
2925, 27readdd 13059 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( B  +  C ) )  =  ( ( Re `  B )  +  ( Re `  C ) ) )
3025ismbfcn2 22172 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  <->  ( ( x  e.  A  |->  ( Re `  B
) )  e. MblFn  /\  (
x  e.  A  |->  ( Im `  B ) )  e. MblFn ) ) )
319, 30mpbid 210 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e. MblFn  /\  ( x  e.  A  |->  ( Im `  B
) )  e. MblFn )
)
3231simpld 459 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e. MblFn )
3327ismbfcn2 22172 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e. MblFn  <->  ( ( x  e.  A  |->  ( Re `  C
) )  e. MblFn  /\  (
x  e.  A  |->  ( Im `  C ) )  e. MblFn ) ) )
3422, 33mpbid 210 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  C ) )  e. MblFn  /\  ( x  e.  A  |->  ( Im `  C
) )  e. MblFn )
)
3534simpld 459 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  C
) )  e. MblFn )
368simp2d 1009 . . . . 5  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  B )
) ,  -u (
Re `  B ) ,  0 ) ) )  e.  RR ) )
3736simpld 459 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )  e.  RR )
3821simp2d 1009 . . . . 5  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  C
) ) ,  ( Re `  C ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  C )
) ,  -u (
Re `  C ) ,  0 ) ) )  e.  RR ) )
3938simpld 459 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  C
) ) ,  ( Re `  C ) ,  0 ) ) )  e.  RR )
4026, 28, 29, 32, 35, 37, 39ibladdlem 22352 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  +  C )
) ) ,  ( Re `  ( B  +  C ) ) ,  0 ) ) )  e.  RR )
4126renegcld 10007 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Re `  B )  e.  RR )
4228renegcld 10007 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Re `  C )  e.  RR )
4329negeqd 9833 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Re `  ( B  +  C ) )  = 
-u ( ( Re
`  B )  +  ( Re `  C
) ) )
4426recnd 9639 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  CC )
4528recnd 9639 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  C )  e.  CC )
4644, 45negdid 9963 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  -u (
( Re `  B
)  +  ( Re
`  C ) )  =  ( -u (
Re `  B )  +  -u ( Re `  C ) ) )
4743, 46eqtrd 2498 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Re `  ( B  +  C ) )  =  ( -u ( Re
`  B )  + 
-u ( Re `  C ) ) )
4826, 32mbfneg 22183 . . . 4  |-  ( ph  ->  ( x  e.  A  |-> 
-u ( Re `  B ) )  e. MblFn
)
4928, 35mbfneg 22183 . . . 4  |-  ( ph  ->  ( x  e.  A  |-> 
-u ( Re `  C ) )  e. MblFn
)
5036simprd 463 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) )  e.  RR )
5138simprd 463 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  C
) ) ,  -u ( Re `  C ) ,  0 ) ) )  e.  RR )
5241, 42, 47, 48, 49, 50, 51ibladdlem 22352 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  ( B  +  C )
) ) ,  -u ( Re `  ( B  +  C ) ) ,  0 ) ) )  e.  RR )
5340, 52jca 532 . 2  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  +  C )
) ) ,  ( Re `  ( B  +  C ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  ( B  +  C ) ) ) ,  -u ( Re `  ( B  +  C
) ) ,  0 ) ) )  e.  RR ) )
5425imcld 13040 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
5527imcld 13040 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  C )  e.  RR )
5625, 27imaddd 13060 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  ( B  +  C ) )  =  ( ( Im `  B )  +  ( Im `  C ) ) )
5731simprd 463 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e. MblFn )
5834simprd 463 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  C
) )  e. MblFn )
598simp3d 1010 . . . . 5  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  B )
) ,  -u (
Im `  B ) ,  0 ) ) )  e.  RR ) )
6059simpld 459 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )  e.  RR )
6121simp3d 1010 . . . . 5  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  C
) ) ,  ( Im `  C ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  C )
) ,  -u (
Im `  C ) ,  0 ) ) )  e.  RR ) )
6261simpld 459 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  C
) ) ,  ( Im `  C ) ,  0 ) ) )  e.  RR )
6354, 55, 56, 57, 58, 60, 62ibladdlem 22352 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  ( B  +  C )
) ) ,  ( Im `  ( B  +  C ) ) ,  0 ) ) )  e.  RR )
6454renegcld 10007 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Im `  B )  e.  RR )
6555renegcld 10007 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Im `  C )  e.  RR )
6656negeqd 9833 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Im `  ( B  +  C ) )  = 
-u ( ( Im
`  B )  +  ( Im `  C
) ) )
6754recnd 9639 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  CC )
6855recnd 9639 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  C )  e.  CC )
6967, 68negdid 9963 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  -u (
( Im `  B
)  +  ( Im
`  C ) )  =  ( -u (
Im `  B )  +  -u ( Im `  C ) ) )
7066, 69eqtrd 2498 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Im `  ( B  +  C ) )  =  ( -u ( Im
`  B )  + 
-u ( Im `  C ) ) )
7154, 57mbfneg 22183 . . . 4  |-  ( ph  ->  ( x  e.  A  |-> 
-u ( Im `  B ) )  e. MblFn
)
7255, 58mbfneg 22183 . . . 4  |-  ( ph  ->  ( x  e.  A  |-> 
-u ( Im `  C ) )  e. MblFn
)
7359simprd 463 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B
) ) ,  -u ( Im `  B ) ,  0 ) ) )  e.  RR )
7461simprd 463 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  C
) ) ,  -u ( Im `  C ) ,  0 ) ) )  e.  RR )
7564, 65, 70, 71, 72, 73, 74ibladdlem 22352 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  ( B  +  C )
) ) ,  -u ( Im `  ( B  +  C ) ) ,  0 ) ) )  e.  RR )
7663, 75jca 532 . 2  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  ( B  +  C )
) ) ,  ( Im `  ( B  +  C ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  ( B  +  C ) ) ) ,  -u ( Im `  ( B  +  C
) ) ,  0 ) ) )  e.  RR ) )
77 eqid 2457 . . 3  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  +  C )
) ) ,  ( Re `  ( B  +  C ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  +  C )
) ) ,  ( Re `  ( B  +  C ) ) ,  0 ) ) )
78 eqid 2457 . . 3  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  ( B  +  C )
) ) ,  -u ( Re `  ( B  +  C ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  ( B  +  C )
) ) ,  -u ( Re `  ( B  +  C ) ) ,  0 ) ) )
79 eqid 2457 . . 3  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  ( B  +  C )
) ) ,  ( Im `  ( B  +  C ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  ( B  +  C )
) ) ,  ( Im `  ( B  +  C ) ) ,  0 ) ) )
80 eqid 2457 . . 3  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  ( B  +  C )
) ) ,  -u ( Im `  ( B  +  C ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  ( B  +  C )
) ) ,  -u ( Im `  ( B  +  C ) ) ,  0 ) ) )
81 ovex 6324 . . . 4  |-  ( B  +  C )  e. 
_V
8281a1i 11 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  e.  _V )
8377, 78, 79, 80, 82iblcnlem 22321 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  ( B  +  C ) )  e.  L^1  <->  ( (
x  e.  A  |->  ( B  +  C ) )  e. MblFn  /\  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( B  +  C ) ) ) ,  ( Re `  ( B  +  C
) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  ( B  +  C )
) ) ,  -u ( Re `  ( B  +  C ) ) ,  0 ) ) )  e.  RR )  /\  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  ( B  +  C )
) ) ,  ( Im `  ( B  +  C ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  ( B  +  C ) ) ) ,  -u ( Im `  ( B  +  C
) ) ,  0 ) ) )  e.  RR ) ) ) )
8424, 53, 76, 83mpbir3and 1179 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e.  L^1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    e. wcel 1819   _Vcvv 3109   ifcif 3944   class class class wbr 4456    |-> cmpt 4515   dom cdm 5008   ` cfv 5594  (class class class)co 6296    oFcof 6537   RRcr 9508   0cc0 9509    + caddc 9512    <_ cle 9646   -ucneg 9825   Recre 12942   Imcim 12943   volcvol 22001  MblFncmbf 22149   S.2citg2 22151   L^1cibl 22152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cc 8832  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-disj 4428  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-ofr 6540  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-omul 7153  df-er 7329  df-map 7440  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-acn 8340  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-ioc 11559  df-ico 11560  df-icc 11561  df-fz 11698  df-fzo 11822  df-fl 11932  df-seq 12111  df-exp 12170  df-hash 12409  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-clim 13323  df-rlim 13324  df-sum 13521  df-rest 14840  df-topgen 14861  df-psmet 18538  df-xmet 18539  df-met 18540  df-bl 18541  df-mopn 18542  df-top 19526  df-bases 19528  df-topon 19529  df-cmp 20014  df-ovol 22002  df-vol 22003  df-mbf 22154  df-itg1 22155  df-itg2 22156  df-ibl 22157  df-0p 22203
This theorem is referenced by:  iblsub  22354  itgaddlem1  22355  itgaddlem2  22356  itgadd  22357  itgfsum  22359  itgparts  22574
  Copyright terms: Public domain W3C validator