Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblabsnc Structured version   Unicode version

Theorem iblabsnc 29643
Description: Choice-free analogue of iblabs 21963. As with ibladdnc 29636, a measurability hypothesis is needed. (Contributed by Brendan Leahy, 7-Nov-2017.)
Hypotheses
Ref Expression
iblabsnc.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
iblabsnc.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
iblabsnc.m  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e. MblFn )
Assertion
Ref Expression
iblabsnc  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem iblabsnc
StepHypRef Expression
1 iblabsnc.m . 2  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e. MblFn )
2 iblabsnc.2 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
3 iblmbf 21902 . . . . . . . . . . 11  |-  ( ( x  e.  A  |->  B )  e.  L^1 
->  ( x  e.  A  |->  B )  e. MblFn )
42, 3syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
5 iblabsnc.1 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
64, 5mbfmptcl 21772 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
76abscld 13216 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  RR )
87rexrd 9632 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e. 
RR* )
96absge0d 13224 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  B
) )
10 elxrge0 11618 . . . . . . 7  |-  ( ( abs `  B )  e.  ( 0 [,] +oo )  <->  ( ( abs `  B )  e.  RR*  /\  0  <_  ( abs `  B ) ) )
118, 9, 10sylanbrc 664 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  ( 0 [,] +oo ) )
12 0e0iccpnf 11620 . . . . . . 7  |-  0  e.  ( 0 [,] +oo )
1312a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,] +oo ) )
1411, 13ifclda 3964 . . . . 5  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  e.  ( 0 [,] +oo ) )
1514adantr 465 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  B
) ,  0 )  e.  ( 0 [,] +oo ) )
16 eqid 2460 . . . 4  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )
1715, 16fmptd 6036 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
18 reex 9572 . . . . . . . . 9  |-  RR  e.  _V
1918a1i 11 . . . . . . . 8  |-  ( ph  ->  RR  e.  _V )
206recld 12977 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
2120recnd 9611 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  CC )
2221abscld 13216 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Re `  B ) )  e.  RR )
2321absge0d 13224 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  (
Re `  B )
) )
24 elrege0 11616 . . . . . . . . . . 11  |-  ( ( abs `  ( Re
`  B ) )  e.  ( 0 [,) +oo )  <->  ( ( abs `  ( Re `  B
) )  e.  RR  /\  0  <_  ( abs `  ( Re `  B
) ) ) )
2522, 23, 24sylanbrc 664 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Re `  B ) )  e.  ( 0 [,) +oo ) )
26 0e0icopnf 11619 . . . . . . . . . . 11  |-  0  e.  ( 0 [,) +oo )
2726a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,) +oo ) )
2825, 27ifclda 3964 . . . . . . . . 9  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  ( Re `  B
) ) ,  0 )  e.  ( 0 [,) +oo ) )
2928adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 )  e.  ( 0 [,) +oo ) )
306imcld 12978 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
3130recnd 9611 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  CC )
3231abscld 13216 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  e.  RR )
3331absge0d 13224 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  (
Im `  B )
) )
34 elrege0 11616 . . . . . . . . . . 11  |-  ( ( abs `  ( Im
`  B ) )  e.  ( 0 [,) +oo )  <->  ( ( abs `  ( Im `  B
) )  e.  RR  /\  0  <_  ( abs `  ( Im `  B
) ) ) )
3532, 33, 34sylanbrc 664 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  e.  ( 0 [,) +oo ) )
3635, 27ifclda 3964 . . . . . . . . 9  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  ( Im `  B
) ) ,  0 )  e.  ( 0 [,) +oo ) )
3736adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 )  e.  ( 0 [,) +oo ) )
38 eqidd 2461 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 ) ) )
39 eqidd 2461 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) )
4019, 29, 37, 38, 39offval2 6531 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) )  =  ( x  e.  RR  |->  ( if ( x  e.  A ,  ( abs `  ( Re `  B
) ) ,  0 )  +  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) )
41 iftrue 3938 . . . . . . . . . . 11  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  =  ( abs `  (
Re `  B )
) )
42 iftrue 3938 . . . . . . . . . . 11  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 )  =  ( abs `  (
Im `  B )
) )
4341, 42oveq12d 6293 . . . . . . . . . 10  |-  ( x  e.  A  ->  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  =  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) )
44 iftrue 3938 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 )  =  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) )
4543, 44eqtr4d 2504 . . . . . . . . 9  |-  ( x  e.  A  ->  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  =  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
46 00id 9743 . . . . . . . . . 10  |-  ( 0  +  0 )  =  0
47 iffalse 3941 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  =  0 )
48 iffalse 3941 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 )  =  0 )
4947, 48oveq12d 6293 . . . . . . . . . 10  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im `  B
) ) ,  0 ) )  =  ( 0  +  0 ) )
50 iffalse 3941 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 )  =  0 )
5146, 49, 503eqtr4a 2527 . . . . . . . . 9  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im `  B
) ) ,  0 ) )  =  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )
5245, 51pm2.61i 164 . . . . . . . 8  |-  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  =  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 )
5352mpteq2i 4523 . . . . . . 7  |-  ( x  e.  RR  |->  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
5440, 53syl6req 2518 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )  =  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) ) )
5554fveq2d 5861 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  =  ( S.2 `  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) ) ) )
56 eqid 2460 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 ) )
576iblcn 21933 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  ( Re `  B ) )  e.  L^1 
/\  ( x  e.  A  |->  ( Im `  B ) )  e.  L^1 ) ) )
582, 57mpbid 210 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e.  L^1  /\  (
x  e.  A  |->  ( Im `  B ) )  e.  L^1 ) )
5958simpld 459 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e.  L^1 )
605, 2, 56, 59, 20iblabsnclem 29642 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  e.  RR ) )
6160simpld 459 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  e. MblFn )
6229, 56fmptd 6036 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
6360simprd 463 . . . . . 6  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  e.  RR )
64 eqid 2460 . . . . . . 7  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) )
6537, 64fmptd 6036 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
6658simprd 463 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e.  L^1 )
675, 2, 64, 66, 30iblabsnclem 29642 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) )  e.  RR ) )
6867simprd 463 . . . . . 6  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) )  e.  RR )
6961, 62, 63, 65, 68itg2addnc 29633 . . . . 5  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) ) )
7055, 69eqtrd 2501 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) ) )
7163, 68readdcld 9612 . . . 4  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) )  e.  RR )
7270, 71eqeltrd 2548 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  e.  RR )
7322, 32readdcld 9612 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e.  RR )
7473rexrd 9632 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e. 
RR* )
7522, 32, 23, 33addge0d 10117 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) )
76 elxrge0 11618 . . . . . . . 8  |-  ( ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e.  ( 0 [,] +oo ) 
<->  ( ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) )  e.  RR*  /\  0  <_  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ) )
7774, 75, 76sylanbrc 664 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e.  ( 0 [,] +oo ) )
7877, 13ifclda 3964 . . . . . 6  |-  ( ph  ->  if ( x  e.  A ,  ( ( abs `  ( Re
`  B ) )  +  ( abs `  (
Im `  B )
) ) ,  0 )  e.  ( 0 [,] +oo ) )
7978adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 )  e.  ( 0 [,] +oo )
)
80 eqid 2460 . . . . 5  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )
8179, 80fmptd 6036 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
82 ax-icn 9540 . . . . . . . . . . 11  |-  _i  e.  CC
83 mulcl 9565 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( _i  x.  (
Im `  B )
)  e.  CC )
8482, 31, 83sylancr 663 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
_i  x.  ( Im `  B ) )  e.  CC )
8521, 84abstrid 13236 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )  <_ 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( _i  x.  (
Im `  B )
) ) ) )
86 iftrue 3938 . . . . . . . . . . 11  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  ( abs `  B
) )
8786adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  ( abs `  B
) )
886replimd 12980 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  B  =  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )
8988fveq2d 5861 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  =  ( abs `  (
( Re `  B
)  +  ( _i  x.  ( Im `  B ) ) ) ) )
9087, 89eqtrd 2501 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  ( abs `  (
( Re `  B
)  +  ( _i  x.  ( Im `  B ) ) ) ) )
9144adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 )  =  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) )
92 absmul 13077 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( abs `  (
_i  x.  ( Im `  B ) ) )  =  ( ( abs `  _i )  x.  ( abs `  ( Im `  B ) ) ) )
9382, 31, 92sylancr 663 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( _i  x.  ( Im `  B ) ) )  =  ( ( abs `  _i )  x.  ( abs `  ( Im `  B
) ) ) )
94 absi 13069 . . . . . . . . . . . . . 14  |-  ( abs `  _i )  =  1
9594oveq1i 6285 . . . . . . . . . . . . 13  |-  ( ( abs `  _i )  x.  ( abs `  (
Im `  B )
) )  =  ( 1  x.  ( abs `  ( Im `  B
) ) )
9632recnd 9611 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  e.  CC )
9796mulid2d 9603 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
1  x.  ( abs `  ( Im `  B
) ) )  =  ( abs `  (
Im `  B )
) )
9895, 97syl5eq 2513 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  _i )  x.  ( abs `  ( Im `  B
) ) )  =  ( abs `  (
Im `  B )
) )
9993, 98eqtr2d 2502 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  =  ( abs `  (
_i  x.  ( Im `  B ) ) ) )
10099oveq2d 6291 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  =  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( _i  x.  (
Im `  B )
) ) ) )
10191, 100eqtrd 2501 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 )  =  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( _i  x.  ( Im `  B ) ) ) ) )
10285, 90, 1013brtr4d 4470 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
103102ex 434 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  <_  if (
x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )
104 0le0 10614 . . . . . . . . 9  |-  0  <_  0
105104a1i 11 . . . . . . . 8  |-  ( -.  x  e.  A  -> 
0  <_  0 )
106 iffalse 3941 . . . . . . . 8  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  0 )
107105, 106, 503brtr4d 4470 . . . . . . 7  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
108103, 107pm2.61d1 159 . . . . . 6  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  <_  if (
x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
109108ralrimivw 2872 . . . . 5  |-  ( ph  ->  A. x  e.  RR  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
110 eqidd 2461 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )
111 eqidd 2461 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )
11219, 15, 79, 110, 111ofrfval2 6532 . . . . 5  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) )  oR  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )  <->  A. x  e.  RR  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )
113109, 112mpbird 232 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  oR  <_ 
( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )
114 itg2le 21874 . . . 4  |-  ( ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  oR  <_ 
( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) ) )
11517, 81, 113, 114syl3anc 1223 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) ) )
116 itg2lecl 21873 . . 3  |-  ( ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )  e.  RR )
11717, 72, 115, 116syl3anc 1223 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) )  e.  RR )
1187, 9iblpos 21927 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 
<->  ( ( x  e.  A  |->  ( abs `  B
) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  e.  RR ) ) )
1191, 117, 118mpbir2and 915 1  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2807   _Vcvv 3106   ifcif 3932   class class class wbr 4440    |-> cmpt 4498   -->wf 5575   ` cfv 5579  (class class class)co 6275    oFcof 6513    oRcofr 6514   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482   _ici 9483    + caddc 9484    x. cmul 9486   +oocpnf 9614   RR*cxr 9616    <_ cle 9618   [,)cico 11520   [,]cicc 11521   Recre 12880   Imcim 12881   abscabs 13017  MblFncmbf 21751   S.2citg2 21753   L^1cibl 21754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-disj 4411  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-ofr 6516  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-pm 7413  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fi 7860  df-sup 7890  df-oi 7924  df-card 8309  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-n0 10785  df-z 10854  df-uz 11072  df-q 11172  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-ioo 11522  df-ico 11524  df-icc 11525  df-fz 11662  df-fzo 11782  df-fl 11886  df-seq 12064  df-exp 12123  df-hash 12361  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-clim 13260  df-sum 13458  df-rest 14667  df-topgen 14688  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-mopn 18179  df-top 19159  df-bases 19161  df-topon 19162  df-cmp 19646  df-ovol 21604  df-vol 21605  df-mbf 21756  df-itg1 21757  df-itg2 21758  df-ibl 21759  df-0p 21805
This theorem is referenced by:  itgabsnc  29648  ftc1cnnclem  29652  ftc1anclem2  29655  ftc1anclem4  29657  ftc1anclem5  29658  ftc2nc  29663
  Copyright terms: Public domain W3C validator