MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblabs Structured version   Visualization version   Unicode version

Theorem iblabs 22865
Description: The absolute value of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
iblabs.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
iblabs.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
Assertion
Ref Expression
iblabs  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem iblabs
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iblabs.2 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
2 iblmbf 22804 . . . . . 6  |-  ( ( x  e.  A  |->  B )  e.  L^1 
->  ( x  e.  A  |->  B )  e. MblFn )
31, 2syl 17 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
4 iblabs.1 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
53, 4mbfmptcl 22672 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
6 eqidd 2472 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B ) )
7 absf 13477 . . . . . 6  |-  abs : CC
--> RR
87a1i 11 . . . . 5  |-  ( ph  ->  abs : CC --> RR )
98feqmptd 5932 . . . 4  |-  ( ph  ->  abs  =  ( y  e.  CC  |->  ( abs `  y ) ) )
10 fveq2 5879 . . . 4  |-  ( y  =  B  ->  ( abs `  y )  =  ( abs `  B
) )
115, 6, 9, 10fmptco 6072 . . 3  |-  ( ph  ->  ( abs  o.  (
x  e.  A  |->  B ) )  =  ( x  e.  A  |->  ( abs `  B ) ) )
12 eqid 2471 . . . . 5  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
135, 12fmptd 6061 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> CC )
14 ax-resscn 9614 . . . . . . 7  |-  RR  C_  CC
15 ssid 3437 . . . . . . 7  |-  CC  C_  CC
16 cncfss 22009 . . . . . . 7  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( CC -cn-> RR )  C_  ( CC -cn-> CC ) )
1714, 15, 16mp2an 686 . . . . . 6  |-  ( CC
-cn-> RR )  C_  ( CC -cn-> CC )
18 abscncf 22011 . . . . . 6  |-  abs  e.  ( CC -cn-> RR )
1917, 18sselii 3415 . . . . 5  |-  abs  e.  ( CC -cn-> CC )
2019a1i 11 . . . 4  |-  ( ph  ->  abs  e.  ( CC
-cn-> CC ) )
21 cncombf 22693 . . . 4  |-  ( ( ( x  e.  A  |->  B )  e. MblFn  /\  (
x  e.  A  |->  B ) : A --> CC  /\  abs  e.  ( CC -cn-> CC ) )  ->  ( abs  o.  ( x  e.  A  |->  B ) )  e. MblFn )
223, 13, 20, 21syl3anc 1292 . . 3  |-  ( ph  ->  ( abs  o.  (
x  e.  A  |->  B ) )  e. MblFn )
2311, 22eqeltrrd 2550 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e. MblFn )
245abscld 13575 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  RR )
2524rexrd 9708 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e. 
RR* )
265absge0d 13583 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  B
) )
27 elxrge0 11767 . . . . . . 7  |-  ( ( abs `  B )  e.  ( 0 [,] +oo )  <->  ( ( abs `  B )  e.  RR*  /\  0  <_  ( abs `  B ) ) )
2825, 26, 27sylanbrc 677 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  ( 0 [,] +oo ) )
29 0e0iccpnf 11769 . . . . . . 7  |-  0  e.  ( 0 [,] +oo )
3029a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,] +oo ) )
3128, 30ifclda 3904 . . . . 5  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  e.  ( 0 [,] +oo ) )
3231adantr 472 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  B
) ,  0 )  e.  ( 0 [,] +oo ) )
33 eqid 2471 . . . 4  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )
3432, 33fmptd 6061 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
35 reex 9648 . . . . . . . . 9  |-  RR  e.  _V
3635a1i 11 . . . . . . . 8  |-  ( ph  ->  RR  e.  _V )
375recld 13334 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
3837recnd 9687 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  CC )
3938abscld 13575 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Re `  B ) )  e.  RR )
4038absge0d 13583 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  (
Re `  B )
) )
41 elrege0 11764 . . . . . . . . . . 11  |-  ( ( abs `  ( Re
`  B ) )  e.  ( 0 [,) +oo )  <->  ( ( abs `  ( Re `  B
) )  e.  RR  /\  0  <_  ( abs `  ( Re `  B
) ) ) )
4239, 40, 41sylanbrc 677 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Re `  B ) )  e.  ( 0 [,) +oo ) )
43 0e0icopnf 11768 . . . . . . . . . . 11  |-  0  e.  ( 0 [,) +oo )
4443a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,) +oo ) )
4542, 44ifclda 3904 . . . . . . . . 9  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  ( Re `  B
) ) ,  0 )  e.  ( 0 [,) +oo ) )
4645adantr 472 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 )  e.  ( 0 [,) +oo ) )
475imcld 13335 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
4847recnd 9687 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  CC )
4948abscld 13575 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  e.  RR )
5048absge0d 13583 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  (
Im `  B )
) )
51 elrege0 11764 . . . . . . . . . . 11  |-  ( ( abs `  ( Im
`  B ) )  e.  ( 0 [,) +oo )  <->  ( ( abs `  ( Im `  B
) )  e.  RR  /\  0  <_  ( abs `  ( Im `  B
) ) ) )
5249, 50, 51sylanbrc 677 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  e.  ( 0 [,) +oo ) )
5352, 44ifclda 3904 . . . . . . . . 9  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  ( Im `  B
) ) ,  0 )  e.  ( 0 [,) +oo ) )
5453adantr 472 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 )  e.  ( 0 [,) +oo ) )
55 eqidd 2472 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 ) ) )
56 eqidd 2472 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) )
5736, 46, 54, 55, 56offval2 6567 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) )  =  ( x  e.  RR  |->  ( if ( x  e.  A ,  ( abs `  ( Re `  B
) ) ,  0 )  +  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) )
58 iftrue 3878 . . . . . . . . . . 11  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  =  ( abs `  (
Re `  B )
) )
59 iftrue 3878 . . . . . . . . . . 11  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 )  =  ( abs `  (
Im `  B )
) )
6058, 59oveq12d 6326 . . . . . . . . . 10  |-  ( x  e.  A  ->  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  =  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) )
61 iftrue 3878 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 )  =  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) )
6260, 61eqtr4d 2508 . . . . . . . . 9  |-  ( x  e.  A  ->  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  =  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
63 00id 9826 . . . . . . . . . 10  |-  ( 0  +  0 )  =  0
64 iffalse 3881 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  =  0 )
65 iffalse 3881 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 )  =  0 )
6664, 65oveq12d 6326 . . . . . . . . . 10  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im `  B
) ) ,  0 ) )  =  ( 0  +  0 ) )
67 iffalse 3881 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 )  =  0 )
6863, 66, 673eqtr4a 2531 . . . . . . . . 9  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im `  B
) ) ,  0 ) )  =  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )
6962, 68pm2.61i 169 . . . . . . . 8  |-  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  =  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 )
7069mpteq2i 4479 . . . . . . 7  |-  ( x  e.  RR  |->  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
7157, 70syl6req 2522 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )  =  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) ) )
7271fveq2d 5883 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  =  ( S.2 `  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) ) ) )
73 eqid 2471 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 ) )
745iblcn 22835 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  ( Re `  B ) )  e.  L^1 
/\  ( x  e.  A  |->  ( Im `  B ) )  e.  L^1 ) ) )
751, 74mpbid 215 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e.  L^1  /\  (
x  e.  A  |->  ( Im `  B ) )  e.  L^1 ) )
7675simpld 466 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e.  L^1 )
774, 1, 73, 76, 37iblabslem 22864 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  e.  RR ) )
7877simpld 466 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  e. MblFn )
7946, 73fmptd 6061 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
8077simprd 470 . . . . . 6  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  e.  RR )
81 eqid 2471 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) )
8275simprd 470 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e.  L^1 )
834, 1, 81, 82, 47iblabslem 22864 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) )  e.  RR ) )
8483simpld 466 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) )  e. MblFn )
8554, 81fmptd 6061 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
8683simprd 470 . . . . . 6  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) )  e.  RR )
8778, 79, 80, 84, 85, 86itg2add 22796 . . . . 5  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) ) )
8872, 87eqtrd 2505 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) ) )
8980, 86readdcld 9688 . . . 4  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) )  e.  RR )
9088, 89eqeltrd 2549 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  e.  RR )
9139, 49readdcld 9688 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e.  RR )
9291rexrd 9708 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e. 
RR* )
9339, 49, 40, 50addge0d 10210 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) )
94 elxrge0 11767 . . . . . . . 8  |-  ( ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e.  ( 0 [,] +oo ) 
<->  ( ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) )  e.  RR*  /\  0  <_  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ) )
9592, 93, 94sylanbrc 677 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e.  ( 0 [,] +oo ) )
9695, 30ifclda 3904 . . . . . 6  |-  ( ph  ->  if ( x  e.  A ,  ( ( abs `  ( Re
`  B ) )  +  ( abs `  (
Im `  B )
) ) ,  0 )  e.  ( 0 [,] +oo ) )
9796adantr 472 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 )  e.  ( 0 [,] +oo )
)
98 eqid 2471 . . . . 5  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )
9997, 98fmptd 6061 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
100 ax-icn 9616 . . . . . . . . . . . 12  |-  _i  e.  CC
101 mulcl 9641 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( _i  x.  (
Im `  B )
)  e.  CC )
102100, 48, 101sylancr 676 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
_i  x.  ( Im `  B ) )  e.  CC )
10338, 102abstrid 13595 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )  <_ 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( _i  x.  (
Im `  B )
) ) ) )
1045replimd 13337 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  B  =  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )
105104fveq2d 5883 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  =  ( abs `  (
( Re `  B
)  +  ( _i  x.  ( Im `  B ) ) ) ) )
106 absmul 13434 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( abs `  (
_i  x.  ( Im `  B ) ) )  =  ( ( abs `  _i )  x.  ( abs `  ( Im `  B ) ) ) )
107100, 48, 106sylancr 676 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( _i  x.  ( Im `  B ) ) )  =  ( ( abs `  _i )  x.  ( abs `  ( Im `  B
) ) ) )
108 absi 13426 . . . . . . . . . . . . . 14  |-  ( abs `  _i )  =  1
109108oveq1i 6318 . . . . . . . . . . . . 13  |-  ( ( abs `  _i )  x.  ( abs `  (
Im `  B )
) )  =  ( 1  x.  ( abs `  ( Im `  B
) ) )
11049recnd 9687 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  e.  CC )
111110mulid2d 9679 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
1  x.  ( abs `  ( Im `  B
) ) )  =  ( abs `  (
Im `  B )
) )
112109, 111syl5eq 2517 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  _i )  x.  ( abs `  ( Im `  B
) ) )  =  ( abs `  (
Im `  B )
) )
113107, 112eqtr2d 2506 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  =  ( abs `  (
_i  x.  ( Im `  B ) ) ) )
114113oveq2d 6324 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  =  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( _i  x.  (
Im `  B )
) ) ) )
115103, 105, 1143brtr4d 4426 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  <_ 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) )
116 iftrue 3878 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  ( abs `  B
) )
117116adantl 473 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  ( abs `  B
) )
11861adantl 473 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 )  =  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) )
119115, 117, 1183brtr4d 4426 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
120119ex 441 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  <_  if (
x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )
121 0le0 10721 . . . . . . . . 9  |-  0  <_  0
122121a1i 11 . . . . . . . 8  |-  ( -.  x  e.  A  -> 
0  <_  0 )
123 iffalse 3881 . . . . . . . 8  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  0 )
124122, 123, 673brtr4d 4426 . . . . . . 7  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
125120, 124pm2.61d1 164 . . . . . 6  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  <_  if (
x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
126125ralrimivw 2810 . . . . 5  |-  ( ph  ->  A. x  e.  RR  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
127 eqidd 2472 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )
128 eqidd 2472 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )
12936, 32, 97, 127, 128ofrfval2 6568 . . . . 5  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) )  oR  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )  <->  A. x  e.  RR  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )
130126, 129mpbird 240 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  oR  <_ 
( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )
131 itg2le 22776 . . . 4  |-  ( ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  oR  <_ 
( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) ) )
13234, 99, 130, 131syl3anc 1292 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) ) )
133 itg2lecl 22775 . . 3  |-  ( ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )  e.  RR )
13434, 90, 132, 133syl3anc 1292 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) )  e.  RR )
13524, 26iblpos 22829 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 
<->  ( ( x  e.  A  |->  ( abs `  B
) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  e.  RR ) ) )
13623, 134, 135mpbir2and 936 1  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   _Vcvv 3031    C_ wss 3390   ifcif 3872   class class class wbr 4395    |-> cmpt 4454    o. ccom 4843   -->wf 5585   ` cfv 5589  (class class class)co 6308    oFcof 6548    oRcofr 6549   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558   _ici 9559    + caddc 9560    x. cmul 9562   +oocpnf 9690   RR*cxr 9692    <_ cle 9694   [,)cico 11662   [,]cicc 11663   Recre 13237   Imcim 13238   abscabs 13374   -cn->ccncf 21986  MblFncmbf 22651   S.2citg2 22653   L^1cibl 22654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cc 8883  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-disj 4367  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-ofr 6551  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-omul 7205  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-acn 8394  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-rlim 13630  df-sum 13830  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cn 20320  df-cnp 20321  df-cmp 20479  df-tx 20654  df-hmeo 20847  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-ovol 22494  df-vol 22496  df-mbf 22656  df-itg1 22657  df-itg2 22658  df-ibl 22659  df-0p 22707
This theorem is referenced by:  iblmulc2  22867  itgabs  22871  bddmulibl  22875  itgcn  22879  ftc1a  23068  ftc1lem4  23070  itgulm  23442  fourierdlem47  38129  fourierdlem87  38169  etransclem23  38234
  Copyright terms: Public domain W3C validator