MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblabs Structured version   Unicode version

Theorem iblabs 22529
Description: The absolute value of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
iblabs.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
iblabs.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
Assertion
Ref Expression
iblabs  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem iblabs
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iblabs.2 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
2 iblmbf 22468 . . . . . 6  |-  ( ( x  e.  A  |->  B )  e.  L^1 
->  ( x  e.  A  |->  B )  e. MblFn )
31, 2syl 17 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
4 iblabs.1 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
53, 4mbfmptcl 22338 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
6 eqidd 2405 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B ) )
7 absf 13321 . . . . . 6  |-  abs : CC
--> RR
87a1i 11 . . . . 5  |-  ( ph  ->  abs : CC --> RR )
98feqmptd 5904 . . . 4  |-  ( ph  ->  abs  =  ( y  e.  CC  |->  ( abs `  y ) ) )
10 fveq2 5851 . . . 4  |-  ( y  =  B  ->  ( abs `  y )  =  ( abs `  B
) )
115, 6, 9, 10fmptco 6045 . . 3  |-  ( ph  ->  ( abs  o.  (
x  e.  A  |->  B ) )  =  ( x  e.  A  |->  ( abs `  B ) ) )
12 eqid 2404 . . . . 5  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
135, 12fmptd 6035 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> CC )
14 ax-resscn 9581 . . . . . . 7  |-  RR  C_  CC
15 ssid 3463 . . . . . . 7  |-  CC  C_  CC
16 cncfss 21697 . . . . . . 7  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( CC -cn-> RR )  C_  ( CC -cn-> CC ) )
1714, 15, 16mp2an 672 . . . . . 6  |-  ( CC
-cn-> RR )  C_  ( CC -cn-> CC )
18 abscncf 21699 . . . . . 6  |-  abs  e.  ( CC -cn-> RR )
1917, 18sselii 3441 . . . . 5  |-  abs  e.  ( CC -cn-> CC )
2019a1i 11 . . . 4  |-  ( ph  ->  abs  e.  ( CC
-cn-> CC ) )
21 cncombf 22359 . . . 4  |-  ( ( ( x  e.  A  |->  B )  e. MblFn  /\  (
x  e.  A  |->  B ) : A --> CC  /\  abs  e.  ( CC -cn-> CC ) )  ->  ( abs  o.  ( x  e.  A  |->  B ) )  e. MblFn )
223, 13, 20, 21syl3anc 1232 . . 3  |-  ( ph  ->  ( abs  o.  (
x  e.  A  |->  B ) )  e. MblFn )
2311, 22eqeltrrd 2493 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e. MblFn )
245abscld 13418 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  RR )
2524rexrd 9675 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e. 
RR* )
265absge0d 13426 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  B
) )
27 elxrge0 11685 . . . . . . 7  |-  ( ( abs `  B )  e.  ( 0 [,] +oo )  <->  ( ( abs `  B )  e.  RR*  /\  0  <_  ( abs `  B ) ) )
2825, 26, 27sylanbrc 664 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  ( 0 [,] +oo ) )
29 0e0iccpnf 11687 . . . . . . 7  |-  0  e.  ( 0 [,] +oo )
3029a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,] +oo ) )
3128, 30ifclda 3919 . . . . 5  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  e.  ( 0 [,] +oo ) )
3231adantr 465 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  B
) ,  0 )  e.  ( 0 [,] +oo ) )
33 eqid 2404 . . . 4  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )
3432, 33fmptd 6035 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
35 reex 9615 . . . . . . . . 9  |-  RR  e.  _V
3635a1i 11 . . . . . . . 8  |-  ( ph  ->  RR  e.  _V )
375recld 13178 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
3837recnd 9654 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  CC )
3938abscld 13418 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Re `  B ) )  e.  RR )
4038absge0d 13426 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  (
Re `  B )
) )
41 elrege0 11683 . . . . . . . . . . 11  |-  ( ( abs `  ( Re
`  B ) )  e.  ( 0 [,) +oo )  <->  ( ( abs `  ( Re `  B
) )  e.  RR  /\  0  <_  ( abs `  ( Re `  B
) ) ) )
4239, 40, 41sylanbrc 664 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Re `  B ) )  e.  ( 0 [,) +oo ) )
43 0e0icopnf 11686 . . . . . . . . . . 11  |-  0  e.  ( 0 [,) +oo )
4443a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,) +oo ) )
4542, 44ifclda 3919 . . . . . . . . 9  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  ( Re `  B
) ) ,  0 )  e.  ( 0 [,) +oo ) )
4645adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 )  e.  ( 0 [,) +oo ) )
475imcld 13179 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
4847recnd 9654 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  CC )
4948abscld 13418 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  e.  RR )
5048absge0d 13426 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  (
Im `  B )
) )
51 elrege0 11683 . . . . . . . . . . 11  |-  ( ( abs `  ( Im
`  B ) )  e.  ( 0 [,) +oo )  <->  ( ( abs `  ( Im `  B
) )  e.  RR  /\  0  <_  ( abs `  ( Im `  B
) ) ) )
5249, 50, 51sylanbrc 664 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  e.  ( 0 [,) +oo ) )
5352, 44ifclda 3919 . . . . . . . . 9  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  ( Im `  B
) ) ,  0 )  e.  ( 0 [,) +oo ) )
5453adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 )  e.  ( 0 [,) +oo ) )
55 eqidd 2405 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 ) ) )
56 eqidd 2405 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) )
5736, 46, 54, 55, 56offval2 6540 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) )  =  ( x  e.  RR  |->  ( if ( x  e.  A ,  ( abs `  ( Re `  B
) ) ,  0 )  +  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) )
58 iftrue 3893 . . . . . . . . . . 11  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  =  ( abs `  (
Re `  B )
) )
59 iftrue 3893 . . . . . . . . . . 11  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 )  =  ( abs `  (
Im `  B )
) )
6058, 59oveq12d 6298 . . . . . . . . . 10  |-  ( x  e.  A  ->  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  =  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) )
61 iftrue 3893 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 )  =  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) )
6260, 61eqtr4d 2448 . . . . . . . . 9  |-  ( x  e.  A  ->  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  =  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
63 00id 9791 . . . . . . . . . 10  |-  ( 0  +  0 )  =  0
64 iffalse 3896 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  =  0 )
65 iffalse 3896 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 )  =  0 )
6664, 65oveq12d 6298 . . . . . . . . . 10  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im `  B
) ) ,  0 ) )  =  ( 0  +  0 ) )
67 iffalse 3896 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 )  =  0 )
6863, 66, 673eqtr4a 2471 . . . . . . . . 9  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im `  B
) ) ,  0 ) )  =  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )
6962, 68pm2.61i 166 . . . . . . . 8  |-  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  =  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 )
7069mpteq2i 4480 . . . . . . 7  |-  ( x  e.  RR  |->  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
7157, 70syl6req 2462 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )  =  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) ) )
7271fveq2d 5855 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  =  ( S.2 `  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) ) ) )
73 eqid 2404 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 ) )
745iblcn 22499 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  ( Re `  B ) )  e.  L^1 
/\  ( x  e.  A  |->  ( Im `  B ) )  e.  L^1 ) ) )
751, 74mpbid 212 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e.  L^1  /\  (
x  e.  A  |->  ( Im `  B ) )  e.  L^1 ) )
7675simpld 459 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e.  L^1 )
774, 1, 73, 76, 37iblabslem 22528 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  e.  RR ) )
7877simpld 459 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  e. MblFn )
7946, 73fmptd 6035 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
8077simprd 463 . . . . . 6  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  e.  RR )
81 eqid 2404 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) )
8275simprd 463 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e.  L^1 )
834, 1, 81, 82, 47iblabslem 22528 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) )  e.  RR ) )
8483simpld 459 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) )  e. MblFn )
8554, 81fmptd 6035 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
8683simprd 463 . . . . . 6  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) )  e.  RR )
8778, 79, 80, 84, 85, 86itg2add 22460 . . . . 5  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) ) )
8872, 87eqtrd 2445 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) ) )
8980, 86readdcld 9655 . . . 4  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) )  e.  RR )
9088, 89eqeltrd 2492 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  e.  RR )
9139, 49readdcld 9655 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e.  RR )
9291rexrd 9675 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e. 
RR* )
9339, 49, 40, 50addge0d 10170 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) )
94 elxrge0 11685 . . . . . . . 8  |-  ( ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e.  ( 0 [,] +oo ) 
<->  ( ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) )  e.  RR*  /\  0  <_  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ) )
9592, 93, 94sylanbrc 664 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e.  ( 0 [,] +oo ) )
9695, 30ifclda 3919 . . . . . 6  |-  ( ph  ->  if ( x  e.  A ,  ( ( abs `  ( Re
`  B ) )  +  ( abs `  (
Im `  B )
) ) ,  0 )  e.  ( 0 [,] +oo ) )
9796adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 )  e.  ( 0 [,] +oo )
)
98 eqid 2404 . . . . 5  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )
9997, 98fmptd 6035 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
100 ax-icn 9583 . . . . . . . . . . . 12  |-  _i  e.  CC
101 mulcl 9608 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( _i  x.  (
Im `  B )
)  e.  CC )
102100, 48, 101sylancr 663 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
_i  x.  ( Im `  B ) )  e.  CC )
10338, 102abstrid 13438 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )  <_ 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( _i  x.  (
Im `  B )
) ) ) )
1045replimd 13181 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  B  =  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )
105104fveq2d 5855 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  =  ( abs `  (
( Re `  B
)  +  ( _i  x.  ( Im `  B ) ) ) ) )
106 absmul 13278 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( abs `  (
_i  x.  ( Im `  B ) ) )  =  ( ( abs `  _i )  x.  ( abs `  ( Im `  B ) ) ) )
107100, 48, 106sylancr 663 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( _i  x.  ( Im `  B ) ) )  =  ( ( abs `  _i )  x.  ( abs `  ( Im `  B
) ) ) )
108 absi 13270 . . . . . . . . . . . . . 14  |-  ( abs `  _i )  =  1
109108oveq1i 6290 . . . . . . . . . . . . 13  |-  ( ( abs `  _i )  x.  ( abs `  (
Im `  B )
) )  =  ( 1  x.  ( abs `  ( Im `  B
) ) )
11049recnd 9654 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  e.  CC )
111110mulid2d 9646 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
1  x.  ( abs `  ( Im `  B
) ) )  =  ( abs `  (
Im `  B )
) )
112109, 111syl5eq 2457 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  _i )  x.  ( abs `  ( Im `  B
) ) )  =  ( abs `  (
Im `  B )
) )
113107, 112eqtr2d 2446 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  =  ( abs `  (
_i  x.  ( Im `  B ) ) ) )
114113oveq2d 6296 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  =  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( _i  x.  (
Im `  B )
) ) ) )
115103, 105, 1143brtr4d 4427 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  <_ 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) )
116 iftrue 3893 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  ( abs `  B
) )
117116adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  ( abs `  B
) )
11861adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 )  =  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) )
119115, 117, 1183brtr4d 4427 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
120119ex 434 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  <_  if (
x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )
121 0le0 10668 . . . . . . . . 9  |-  0  <_  0
122121a1i 11 . . . . . . . 8  |-  ( -.  x  e.  A  -> 
0  <_  0 )
123 iffalse 3896 . . . . . . . 8  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  0 )
124122, 123, 673brtr4d 4427 . . . . . . 7  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
125120, 124pm2.61d1 161 . . . . . 6  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  <_  if (
x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
126125ralrimivw 2821 . . . . 5  |-  ( ph  ->  A. x  e.  RR  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
127 eqidd 2405 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )
128 eqidd 2405 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )
12936, 32, 97, 127, 128ofrfval2 6541 . . . . 5  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) )  oR  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )  <->  A. x  e.  RR  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )
130126, 129mpbird 234 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  oR  <_ 
( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )
131 itg2le 22440 . . . 4  |-  ( ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  oR  <_ 
( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) ) )
13234, 99, 130, 131syl3anc 1232 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) ) )
133 itg2lecl 22439 . . 3  |-  ( ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )  e.  RR )
13434, 90, 132, 133syl3anc 1232 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) )  e.  RR )
13524, 26iblpos 22493 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 
<->  ( ( x  e.  A  |->  ( abs `  B
) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  e.  RR ) ) )
13623, 134, 135mpbir2and 925 1  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1407    e. wcel 1844   A.wral 2756   _Vcvv 3061    C_ wss 3416   ifcif 3887   class class class wbr 4397    |-> cmpt 4455    o. ccom 4829   -->wf 5567   ` cfv 5571  (class class class)co 6280    oFcof 6521    oRcofr 6522   CCcc 9522   RRcr 9523   0cc0 9524   1c1 9525   _ici 9526    + caddc 9527    x. cmul 9529   +oocpnf 9657   RR*cxr 9659    <_ cle 9661   [,)cico 11586   [,]cicc 11587   Recre 13081   Imcim 13082   abscabs 13218   -cn->ccncf 21674  MblFncmbf 22317   S.2citg2 22319   L^1cibl 22320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-inf2 8093  ax-cc 8849  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601  ax-pre-sup 9602  ax-addf 9603  ax-mulf 9604
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-fal 1413  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-int 4230  df-iun 4275  df-iin 4276  df-disj 4369  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-se 4785  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-isom 5580  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-of 6523  df-ofr 6524  df-om 6686  df-1st 6786  df-2nd 6787  df-supp 6905  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-2o 7170  df-oadd 7173  df-omul 7174  df-er 7350  df-map 7461  df-pm 7462  df-ixp 7510  df-en 7557  df-dom 7558  df-sdom 7559  df-fin 7560  df-fsupp 7866  df-fi 7907  df-sup 7937  df-oi 7971  df-card 8354  df-acn 8357  df-cda 8582  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-div 10250  df-nn 10579  df-2 10637  df-3 10638  df-4 10639  df-5 10640  df-6 10641  df-7 10642  df-8 10643  df-9 10644  df-10 10645  df-n0 10839  df-z 10908  df-dec 11022  df-uz 11130  df-q 11230  df-rp 11268  df-xneg 11373  df-xadd 11374  df-xmul 11375  df-ioo 11588  df-ioc 11589  df-ico 11590  df-icc 11591  df-fz 11729  df-fzo 11857  df-fl 11968  df-seq 12154  df-exp 12213  df-hash 12455  df-cj 13083  df-re 13084  df-im 13085  df-sqrt 13219  df-abs 13220  df-clim 13462  df-rlim 13463  df-sum 13660  df-struct 14845  df-ndx 14846  df-slot 14847  df-base 14848  df-sets 14849  df-ress 14850  df-plusg 14924  df-mulr 14925  df-starv 14926  df-sca 14927  df-vsca 14928  df-ip 14929  df-tset 14930  df-ple 14931  df-ds 14933  df-unif 14934  df-hom 14935  df-cco 14936  df-rest 15039  df-topn 15040  df-0g 15058  df-gsum 15059  df-topgen 15060  df-pt 15061  df-prds 15064  df-xrs 15118  df-qtop 15123  df-imas 15124  df-xps 15126  df-mre 15202  df-mrc 15203  df-acs 15205  df-mgm 16198  df-sgrp 16237  df-mnd 16247  df-submnd 16293  df-mulg 16386  df-cntz 16681  df-cmn 17126  df-psmet 18733  df-xmet 18734  df-met 18735  df-bl 18736  df-mopn 18737  df-cnfld 18743  df-top 19693  df-bases 19695  df-topon 19696  df-topsp 19697  df-cn 20023  df-cnp 20024  df-cmp 20182  df-tx 20357  df-hmeo 20550  df-xms 21117  df-ms 21118  df-tms 21119  df-cncf 21676  df-ovol 22170  df-vol 22171  df-mbf 22322  df-itg1 22323  df-itg2 22324  df-ibl 22325  df-0p 22371
This theorem is referenced by:  iblmulc2  22531  itgabs  22535  bddmulibl  22539  itgcn  22543  ftc1a  22732  ftc1lem4  22734  itgulm  23097  fourierdlem47  37317  fourierdlem87  37357  etransclem23  37421
  Copyright terms: Public domain W3C validator