MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblabs Structured version   Unicode version

Theorem iblabs 21311
Description: The absolute value of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
iblabs.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
iblabs.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
Assertion
Ref Expression
iblabs  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem iblabs
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iblabs.2 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
2 iblmbf 21250 . . . . . 6  |-  ( ( x  e.  A  |->  B )  e.  L^1 
->  ( x  e.  A  |->  B )  e. MblFn )
31, 2syl 16 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
4 iblabs.1 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
53, 4mbfmptcl 21120 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
6 eqidd 2444 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B ) )
7 absf 12830 . . . . . 6  |-  abs : CC
--> RR
87a1i 11 . . . . 5  |-  ( ph  ->  abs : CC --> RR )
98feqmptd 5749 . . . 4  |-  ( ph  ->  abs  =  ( y  e.  CC  |->  ( abs `  y ) ) )
10 fveq2 5696 . . . 4  |-  ( y  =  B  ->  ( abs `  y )  =  ( abs `  B
) )
115, 6, 9, 10fmptco 5881 . . 3  |-  ( ph  ->  ( abs  o.  (
x  e.  A  |->  B ) )  =  ( x  e.  A  |->  ( abs `  B ) ) )
12 eqid 2443 . . . . 5  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
135, 12fmptd 5872 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> CC )
14 ax-resscn 9344 . . . . . . 7  |-  RR  C_  CC
15 ssid 3380 . . . . . . 7  |-  CC  C_  CC
16 cncfss 20480 . . . . . . 7  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( CC -cn-> RR )  C_  ( CC -cn-> CC ) )
1714, 15, 16mp2an 672 . . . . . 6  |-  ( CC
-cn-> RR )  C_  ( CC -cn-> CC )
18 abscncf 20482 . . . . . 6  |-  abs  e.  ( CC -cn-> RR )
1917, 18sselii 3358 . . . . 5  |-  abs  e.  ( CC -cn-> CC )
2019a1i 11 . . . 4  |-  ( ph  ->  abs  e.  ( CC
-cn-> CC ) )
21 cncombf 21141 . . . 4  |-  ( ( ( x  e.  A  |->  B )  e. MblFn  /\  (
x  e.  A  |->  B ) : A --> CC  /\  abs  e.  ( CC -cn-> CC ) )  ->  ( abs  o.  ( x  e.  A  |->  B ) )  e. MblFn )
223, 13, 20, 21syl3anc 1218 . . 3  |-  ( ph  ->  ( abs  o.  (
x  e.  A  |->  B ) )  e. MblFn )
2311, 22eqeltrrd 2518 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e. MblFn )
245abscld 12927 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  RR )
2524rexrd 9438 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e. 
RR* )
265absge0d 12935 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  B
) )
27 elxrge0 11399 . . . . . . 7  |-  ( ( abs `  B )  e.  ( 0 [,] +oo )  <->  ( ( abs `  B )  e.  RR*  /\  0  <_  ( abs `  B ) ) )
2825, 26, 27sylanbrc 664 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  ( 0 [,] +oo ) )
29 0e0iccpnf 11401 . . . . . . 7  |-  0  e.  ( 0 [,] +oo )
3029a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,] +oo ) )
3128, 30ifclda 3826 . . . . 5  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  e.  ( 0 [,] +oo ) )
3231adantr 465 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  B
) ,  0 )  e.  ( 0 [,] +oo ) )
33 eqid 2443 . . . 4  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )
3432, 33fmptd 5872 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
35 reex 9378 . . . . . . . . 9  |-  RR  e.  _V
3635a1i 11 . . . . . . . 8  |-  ( ph  ->  RR  e.  _V )
375recld 12688 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
3837recnd 9417 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  CC )
3938abscld 12927 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Re `  B ) )  e.  RR )
4038absge0d 12935 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  (
Re `  B )
) )
41 elrege0 11397 . . . . . . . . . . 11  |-  ( ( abs `  ( Re
`  B ) )  e.  ( 0 [,) +oo )  <->  ( ( abs `  ( Re `  B
) )  e.  RR  /\  0  <_  ( abs `  ( Re `  B
) ) ) )
4239, 40, 41sylanbrc 664 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Re `  B ) )  e.  ( 0 [,) +oo ) )
43 0e0icopnf 11400 . . . . . . . . . . 11  |-  0  e.  ( 0 [,) +oo )
4443a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,) +oo ) )
4542, 44ifclda 3826 . . . . . . . . 9  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  ( Re `  B
) ) ,  0 )  e.  ( 0 [,) +oo ) )
4645adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 )  e.  ( 0 [,) +oo ) )
475imcld 12689 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
4847recnd 9417 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  CC )
4948abscld 12927 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  e.  RR )
5048absge0d 12935 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  (
Im `  B )
) )
51 elrege0 11397 . . . . . . . . . . 11  |-  ( ( abs `  ( Im
`  B ) )  e.  ( 0 [,) +oo )  <->  ( ( abs `  ( Im `  B
) )  e.  RR  /\  0  <_  ( abs `  ( Im `  B
) ) ) )
5249, 50, 51sylanbrc 664 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  e.  ( 0 [,) +oo ) )
5352, 44ifclda 3826 . . . . . . . . 9  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  ( Im `  B
) ) ,  0 )  e.  ( 0 [,) +oo ) )
5453adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 )  e.  ( 0 [,) +oo ) )
55 eqidd 2444 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 ) ) )
56 eqidd 2444 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) )
5736, 46, 54, 55, 56offval2 6341 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) )  =  ( x  e.  RR  |->  ( if ( x  e.  A ,  ( abs `  ( Re `  B
) ) ,  0 )  +  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) )
58 iftrue 3802 . . . . . . . . . . 11  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  =  ( abs `  (
Re `  B )
) )
59 iftrue 3802 . . . . . . . . . . 11  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 )  =  ( abs `  (
Im `  B )
) )
6058, 59oveq12d 6114 . . . . . . . . . 10  |-  ( x  e.  A  ->  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  =  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) )
61 iftrue 3802 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 )  =  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) )
6260, 61eqtr4d 2478 . . . . . . . . 9  |-  ( x  e.  A  ->  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  =  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
63 00id 9549 . . . . . . . . . 10  |-  ( 0  +  0 )  =  0
64 iffalse 3804 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  =  0 )
65 iffalse 3804 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 )  =  0 )
6664, 65oveq12d 6114 . . . . . . . . . 10  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im `  B
) ) ,  0 ) )  =  ( 0  +  0 ) )
67 iffalse 3804 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 )  =  0 )
6863, 66, 673eqtr4a 2501 . . . . . . . . 9  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im `  B
) ) ,  0 ) )  =  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )
6962, 68pm2.61i 164 . . . . . . . 8  |-  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  =  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 )
7069mpteq2i 4380 . . . . . . 7  |-  ( x  e.  RR  |->  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
7157, 70syl6req 2492 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )  =  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) ) )
7271fveq2d 5700 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  =  ( S.2 `  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) ) ) )
73 eqid 2443 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 ) )
745iblcn 21281 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  ( Re `  B ) )  e.  L^1 
/\  ( x  e.  A  |->  ( Im `  B ) )  e.  L^1 ) ) )
751, 74mpbid 210 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e.  L^1  /\  (
x  e.  A  |->  ( Im `  B ) )  e.  L^1 ) )
7675simpld 459 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e.  L^1 )
774, 1, 73, 76, 37iblabslem 21310 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  e.  RR ) )
7877simpld 459 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  e. MblFn )
7946, 73fmptd 5872 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
8077simprd 463 . . . . . 6  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  e.  RR )
81 eqid 2443 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) )
8275simprd 463 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e.  L^1 )
834, 1, 81, 82, 47iblabslem 21310 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) )  e.  RR ) )
8483simpld 459 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) )  e. MblFn )
8554, 81fmptd 5872 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
8683simprd 463 . . . . . 6  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) )  e.  RR )
8778, 79, 80, 84, 85, 86itg2add 21242 . . . . 5  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) ) )
8872, 87eqtrd 2475 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) ) )
8980, 86readdcld 9418 . . . 4  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) )  e.  RR )
9088, 89eqeltrd 2517 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  e.  RR )
9139, 49readdcld 9418 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e.  RR )
9291rexrd 9438 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e. 
RR* )
9339, 49, 40, 50addge0d 9920 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) )
94 elxrge0 11399 . . . . . . . 8  |-  ( ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e.  ( 0 [,] +oo ) 
<->  ( ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) )  e.  RR*  /\  0  <_  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ) )
9592, 93, 94sylanbrc 664 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e.  ( 0 [,] +oo ) )
9695, 30ifclda 3826 . . . . . 6  |-  ( ph  ->  if ( x  e.  A ,  ( ( abs `  ( Re
`  B ) )  +  ( abs `  (
Im `  B )
) ) ,  0 )  e.  ( 0 [,] +oo ) )
9796adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 )  e.  ( 0 [,] +oo )
)
98 eqid 2443 . . . . 5  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )
9997, 98fmptd 5872 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
100 ax-icn 9346 . . . . . . . . . . . 12  |-  _i  e.  CC
101 mulcl 9371 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( _i  x.  (
Im `  B )
)  e.  CC )
102100, 48, 101sylancr 663 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
_i  x.  ( Im `  B ) )  e.  CC )
10338, 102abstrid 12947 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )  <_ 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( _i  x.  (
Im `  B )
) ) ) )
1045replimd 12691 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  B  =  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )
105104fveq2d 5700 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  =  ( abs `  (
( Re `  B
)  +  ( _i  x.  ( Im `  B ) ) ) ) )
106 absmul 12788 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( abs `  (
_i  x.  ( Im `  B ) ) )  =  ( ( abs `  _i )  x.  ( abs `  ( Im `  B ) ) ) )
107100, 48, 106sylancr 663 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( _i  x.  ( Im `  B ) ) )  =  ( ( abs `  _i )  x.  ( abs `  ( Im `  B
) ) ) )
108 absi 12780 . . . . . . . . . . . . . 14  |-  ( abs `  _i )  =  1
109108oveq1i 6106 . . . . . . . . . . . . 13  |-  ( ( abs `  _i )  x.  ( abs `  (
Im `  B )
) )  =  ( 1  x.  ( abs `  ( Im `  B
) ) )
11049recnd 9417 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  e.  CC )
111110mulid2d 9409 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
1  x.  ( abs `  ( Im `  B
) ) )  =  ( abs `  (
Im `  B )
) )
112109, 111syl5eq 2487 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  _i )  x.  ( abs `  ( Im `  B
) ) )  =  ( abs `  (
Im `  B )
) )
113107, 112eqtr2d 2476 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  =  ( abs `  (
_i  x.  ( Im `  B ) ) ) )
114113oveq2d 6112 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  =  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( _i  x.  (
Im `  B )
) ) ) )
115103, 105, 1143brtr4d 4327 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  <_ 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) )
116 iftrue 3802 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  ( abs `  B
) )
117116adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  ( abs `  B
) )
11861adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 )  =  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) )
119115, 117, 1183brtr4d 4327 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
120119ex 434 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  <_  if (
x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )
121 0le0 10416 . . . . . . . . 9  |-  0  <_  0
122121a1i 11 . . . . . . . 8  |-  ( -.  x  e.  A  -> 
0  <_  0 )
123 iffalse 3804 . . . . . . . 8  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  0 )
124122, 123, 673brtr4d 4327 . . . . . . 7  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
125120, 124pm2.61d1 159 . . . . . 6  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  <_  if (
x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
126125ralrimivw 2805 . . . . 5  |-  ( ph  ->  A. x  e.  RR  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
127 eqidd 2444 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )
128 eqidd 2444 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )
12936, 32, 97, 127, 128ofrfval2 6342 . . . . 5  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) )  oR  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )  <->  A. x  e.  RR  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )
130126, 129mpbird 232 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  oR  <_ 
( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )
131 itg2le 21222 . . . 4  |-  ( ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  oR  <_ 
( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) ) )
13234, 99, 130, 131syl3anc 1218 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) ) )
133 itg2lecl 21221 . . 3  |-  ( ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )  e.  RR )
13434, 90, 132, 133syl3anc 1218 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) )  e.  RR )
13524, 26iblpos 21275 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 
<->  ( ( x  e.  A  |->  ( abs `  B
) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  e.  RR ) ) )
13623, 134, 135mpbir2and 913 1  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720   _Vcvv 2977    C_ wss 3333   ifcif 3796   class class class wbr 4297    e. cmpt 4355    o. ccom 4849   -->wf 5419   ` cfv 5423  (class class class)co 6096    oFcof 6323    oRcofr 6324   CCcc 9285   RRcr 9286   0cc0 9287   1c1 9288   _ici 9289    + caddc 9290    x. cmul 9292   +oocpnf 9420   RR*cxr 9422    <_ cle 9424   [,)cico 11307   [,]cicc 11308   Recre 12591   Imcim 12592   abscabs 12728   -cn->ccncf 20457  MblFncmbf 21099   S.2citg2 21101   L^1cibl 21102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852  ax-cc 8609  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365  ax-addf 9366  ax-mulf 9367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-iin 4179  df-disj 4268  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-of 6325  df-ofr 6326  df-om 6482  df-1st 6582  df-2nd 6583  df-supp 6696  df-recs 6837  df-rdg 6871  df-1o 6925  df-2o 6926  df-oadd 6929  df-omul 6930  df-er 7106  df-map 7221  df-pm 7222  df-ixp 7269  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-fsupp 7626  df-fi 7666  df-sup 7696  df-oi 7729  df-card 8114  df-acn 8117  df-cda 8342  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-4 10387  df-5 10388  df-6 10389  df-7 10390  df-8 10391  df-9 10392  df-10 10393  df-n0 10585  df-z 10652  df-dec 10761  df-uz 10867  df-q 10959  df-rp 10997  df-xneg 11094  df-xadd 11095  df-xmul 11096  df-ioo 11309  df-ioc 11310  df-ico 11311  df-icc 11312  df-fz 11443  df-fzo 11554  df-fl 11647  df-seq 11812  df-exp 11871  df-hash 12109  df-cj 12593  df-re 12594  df-im 12595  df-sqr 12729  df-abs 12730  df-clim 12971  df-rlim 12972  df-sum 13169  df-struct 14181  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-mulr 14257  df-starv 14258  df-sca 14259  df-vsca 14260  df-ip 14261  df-tset 14262  df-ple 14263  df-ds 14265  df-unif 14266  df-hom 14267  df-cco 14268  df-rest 14366  df-topn 14367  df-0g 14385  df-gsum 14386  df-topgen 14387  df-pt 14388  df-prds 14391  df-xrs 14445  df-qtop 14450  df-imas 14451  df-xps 14453  df-mre 14529  df-mrc 14530  df-acs 14532  df-mnd 15420  df-submnd 15470  df-mulg 15553  df-cntz 15840  df-cmn 16284  df-psmet 17814  df-xmet 17815  df-met 17816  df-bl 17817  df-mopn 17818  df-cnfld 17824  df-top 18508  df-bases 18510  df-topon 18511  df-topsp 18512  df-cn 18836  df-cnp 18837  df-cmp 18995  df-tx 19140  df-hmeo 19333  df-xms 19900  df-ms 19901  df-tms 19902  df-cncf 20459  df-ovol 20953  df-vol 20954  df-mbf 21104  df-itg1 21105  df-itg2 21106  df-ibl 21107  df-0p 21153
This theorem is referenced by:  iblmulc2  21313  itgabs  21317  bddmulibl  21321  itgcn  21325  ftc1a  21514  ftc1lem4  21516  itgulm  21878
  Copyright terms: Public domain W3C validator