MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmullem Structured version   Unicode version

Theorem i1fmullem 21831
Description: Decompose the preimage of a product. (Contributed by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1  |-  ( ph  ->  F  e.  dom  S.1 )
i1fadd.2  |-  ( ph  ->  G  e.  dom  S.1 )
Assertion
Ref Expression
i1fmullem  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( `' ( F  oF  x.  G
) " { A } )  =  U_ y  e.  ( ran  G 
\  { 0 } ) ( ( `' F " { ( A  /  y ) } )  i^i  ( `' G " { y } ) ) )
Distinct variable groups:    y, A    y, F    y, G    ph, y

Proof of Theorem i1fmullem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 i1fadd.1 . . . . . . . . 9  |-  ( ph  ->  F  e.  dom  S.1 )
2 i1ff 21813 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
31, 2syl 16 . . . . . . . 8  |-  ( ph  ->  F : RR --> RR )
4 ffn 5724 . . . . . . . 8  |-  ( F : RR --> RR  ->  F  Fn  RR )
53, 4syl 16 . . . . . . 7  |-  ( ph  ->  F  Fn  RR )
6 i1fadd.2 . . . . . . . . 9  |-  ( ph  ->  G  e.  dom  S.1 )
7 i1ff 21813 . . . . . . . . 9  |-  ( G  e.  dom  S.1  ->  G : RR --> RR )
86, 7syl 16 . . . . . . . 8  |-  ( ph  ->  G : RR --> RR )
9 ffn 5724 . . . . . . . 8  |-  ( G : RR --> RR  ->  G  Fn  RR )
108, 9syl 16 . . . . . . 7  |-  ( ph  ->  G  Fn  RR )
11 reex 9574 . . . . . . . 8  |-  RR  e.  _V
1211a1i 11 . . . . . . 7  |-  ( ph  ->  RR  e.  _V )
13 inidm 3702 . . . . . . 7  |-  ( RR 
i^i  RR )  =  RR
145, 10, 12, 12, 13offn 6528 . . . . . 6  |-  ( ph  ->  ( F  oF  x.  G )  Fn  RR )
1514adantr 465 . . . . 5  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( F  oF  x.  G )  Fn  RR )
16 fniniseg 5995 . . . . 5  |-  ( ( F  oF  x.  G )  Fn  RR  ->  ( z  e.  ( `' ( F  oF  x.  G ) " { A } )  <-> 
( z  e.  RR  /\  ( ( F  oF  x.  G ) `  z )  =  A ) ) )
1715, 16syl 16 . . . 4  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( z  e.  ( `' ( F  oF  x.  G ) " { A } )  <-> 
( z  e.  RR  /\  ( ( F  oF  x.  G ) `  z )  =  A ) ) )
185adantr 465 . . . . . . 7  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  ->  F  Fn  RR )
1910adantr 465 . . . . . . 7  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  ->  G  Fn  RR )
2011a1i 11 . . . . . . 7  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  ->  RR  e.  _V )
21 eqidd 2463 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  z  e.  RR )  ->  ( F `  z )  =  ( F `  z ) )
22 eqidd 2463 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  z  e.  RR )  ->  ( G `  z )  =  ( G `  z ) )
2318, 19, 20, 20, 13, 21, 22ofval 6526 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  z  e.  RR )  ->  ( ( F  oF  x.  G
) `  z )  =  ( ( F `
 z )  x.  ( G `  z
) ) )
2423eqeq1d 2464 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  z  e.  RR )  ->  ( ( ( F  oF  x.  G ) `  z
)  =  A  <->  ( ( F `  z )  x.  ( G `  z
) )  =  A ) )
2524pm5.32da 641 . . . 4  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( ( z  e.  RR  /\  ( ( F  oF  x.  G ) `  z
)  =  A )  <-> 
( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z )
)  =  A ) ) )
2610ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  ->  G  Fn  RR )
27 simprl 755 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
z  e.  RR )
28 fnfvelrn 6011 . . . . . . . . 9  |-  ( ( G  Fn  RR  /\  z  e.  RR )  ->  ( G `  z
)  e.  ran  G
)
2926, 27, 28syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( G `  z
)  e.  ran  G
)
30 eldifsni 4148 . . . . . . . . . . 11  |-  ( A  e.  ( CC  \  { 0 } )  ->  A  =/=  0
)
3130ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  ->  A  =/=  0 )
32 simprr 756 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( ( F `  z )  x.  ( G `  z )
)  =  A )
333ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  ->  F : RR --> RR )
3433, 27ffvelrnd 6015 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( F `  z
)  e.  RR )
3534recnd 9613 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( F `  z
)  e.  CC )
3635mul01d 9769 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( ( F `  z )  x.  0 )  =  0 )
3731, 32, 363netr4d 2767 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( ( F `  z )  x.  ( G `  z )
)  =/=  ( ( F `  z )  x.  0 ) )
38 oveq2 6285 . . . . . . . . . 10  |-  ( ( G `  z )  =  0  ->  (
( F `  z
)  x.  ( G `
 z ) )  =  ( ( F `
 z )  x.  0 ) )
3938necon3i 2702 . . . . . . . . 9  |-  ( ( ( F `  z
)  x.  ( G `
 z ) )  =/=  ( ( F `
 z )  x.  0 )  ->  ( G `  z )  =/=  0 )
4037, 39syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( G `  z
)  =/=  0 )
41 eldifsn 4147 . . . . . . . 8  |-  ( ( G `  z )  e.  ( ran  G  \  { 0 } )  <-> 
( ( G `  z )  e.  ran  G  /\  ( G `  z )  =/=  0
) )
4229, 40, 41sylanbrc 664 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( G `  z
)  e.  ( ran 
G  \  { 0 } ) )
438ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  ->  G : RR --> RR )
4443, 27ffvelrnd 6015 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( G `  z
)  e.  RR )
4544recnd 9613 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( G `  z
)  e.  CC )
4635, 45, 40divcan4d 10317 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( ( ( F `
 z )  x.  ( G `  z
) )  /  ( G `  z )
)  =  ( F `
 z ) )
4732oveq1d 6292 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( ( ( F `
 z )  x.  ( G `  z
) )  /  ( G `  z )
)  =  ( A  /  ( G `  z ) ) )
4846, 47eqtr3d 2505 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( F `  z
)  =  ( A  /  ( G `  z ) ) )
4933, 4syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  ->  F  Fn  RR )
50 fniniseg 5995 . . . . . . . . . 10  |-  ( F  Fn  RR  ->  (
z  e.  ( `' F " { ( A  /  ( G `
 z ) ) } )  <->  ( z  e.  RR  /\  ( F `
 z )  =  ( A  /  ( G `  z )
) ) ) )
5149, 50syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( z  e.  ( `' F " { ( A  /  ( G `
 z ) ) } )  <->  ( z  e.  RR  /\  ( F `
 z )  =  ( A  /  ( G `  z )
) ) ) )
5227, 48, 51mpbir2and 915 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
z  e.  ( `' F " { ( A  /  ( G `
 z ) ) } ) )
53 eqidd 2463 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( G `  z
)  =  ( G `
 z ) )
54 fniniseg 5995 . . . . . . . . . 10  |-  ( G  Fn  RR  ->  (
z  e.  ( `' G " { ( G `  z ) } )  <->  ( z  e.  RR  /\  ( G `
 z )  =  ( G `  z
) ) ) )
5526, 54syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( z  e.  ( `' G " { ( G `  z ) } )  <->  ( z  e.  RR  /\  ( G `
 z )  =  ( G `  z
) ) ) )
5627, 53, 55mpbir2and 915 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
z  e.  ( `' G " { ( G `  z ) } ) )
57 elin 3682 . . . . . . . 8  |-  ( z  e.  ( ( `' F " { ( A  /  ( G `
 z ) ) } )  i^i  ( `' G " { ( G `  z ) } ) )  <->  ( z  e.  ( `' F " { ( A  / 
( G `  z
) ) } )  /\  z  e.  ( `' G " { ( G `  z ) } ) ) )
5852, 56, 57sylanbrc 664 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
z  e.  ( ( `' F " { ( A  /  ( G `
 z ) ) } )  i^i  ( `' G " { ( G `  z ) } ) ) )
59 oveq2 6285 . . . . . . . . . . . 12  |-  ( y  =  ( G `  z )  ->  ( A  /  y )  =  ( A  /  ( G `  z )
) )
6059sneqd 4034 . . . . . . . . . . 11  |-  ( y  =  ( G `  z )  ->  { ( A  /  y ) }  =  { ( A  /  ( G `
 z ) ) } )
6160imaeq2d 5330 . . . . . . . . . 10  |-  ( y  =  ( G `  z )  ->  ( `' F " { ( A  /  y ) } )  =  ( `' F " { ( A  /  ( G `
 z ) ) } ) )
62 sneq 4032 . . . . . . . . . . 11  |-  ( y  =  ( G `  z )  ->  { y }  =  { ( G `  z ) } )
6362imaeq2d 5330 . . . . . . . . . 10  |-  ( y  =  ( G `  z )  ->  ( `' G " { y } )  =  ( `' G " { ( G `  z ) } ) )
6461, 63ineq12d 3696 . . . . . . . . 9  |-  ( y  =  ( G `  z )  ->  (
( `' F " { ( A  / 
y ) } )  i^i  ( `' G " { y } ) )  =  ( ( `' F " { ( A  /  ( G `
 z ) ) } )  i^i  ( `' G " { ( G `  z ) } ) ) )
6564eleq2d 2532 . . . . . . . 8  |-  ( y  =  ( G `  z )  ->  (
z  e.  ( ( `' F " { ( A  /  y ) } )  i^i  ( `' G " { y } ) )  <->  z  e.  ( ( `' F " { ( A  / 
( G `  z
) ) } )  i^i  ( `' G " { ( G `  z ) } ) ) ) )
6665rspcev 3209 . . . . . . 7  |-  ( ( ( G `  z
)  e.  ( ran 
G  \  { 0 } )  /\  z  e.  ( ( `' F " { ( A  / 
( G `  z
) ) } )  i^i  ( `' G " { ( G `  z ) } ) ) )  ->  E. y  e.  ( ran  G  \  { 0 } ) z  e.  ( ( `' F " { ( A  /  y ) } )  i^i  ( `' G " { y } ) ) )
6742, 58, 66syl2anc 661 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  ->  E. y  e.  ( ran  G  \  { 0 } ) z  e.  ( ( `' F " { ( A  / 
y ) } )  i^i  ( `' G " { y } ) ) )
6867ex 434 . . . . 5  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A )  ->  E. y  e.  ( ran  G  \  { 0 } ) z  e.  ( ( `' F " { ( A  /  y ) } )  i^i  ( `' G " { y } ) ) ) )
69 fniniseg 5995 . . . . . . . . . . 11  |-  ( F  Fn  RR  ->  (
z  e.  ( `' F " { ( A  /  y ) } )  <->  ( z  e.  RR  /\  ( F `
 z )  =  ( A  /  y
) ) ) )
7018, 69syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( z  e.  ( `' F " { ( A  /  y ) } )  <->  ( z  e.  RR  /\  ( F `
 z )  =  ( A  /  y
) ) ) )
71 fniniseg 5995 . . . . . . . . . . 11  |-  ( G  Fn  RR  ->  (
z  e.  ( `' G " { y } )  <->  ( z  e.  RR  /\  ( G `
 z )  =  y ) ) )
7219, 71syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( z  e.  ( `' G " { y } )  <->  ( z  e.  RR  /\  ( G `
 z )  =  y ) ) )
7370, 72anbi12d 710 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( ( z  e.  ( `' F " { ( A  / 
y ) } )  /\  z  e.  ( `' G " { y } ) )  <->  ( (
z  e.  RR  /\  ( F `  z )  =  ( A  / 
y ) )  /\  ( z  e.  RR  /\  ( G `  z
)  =  y ) ) ) )
74 elin 3682 . . . . . . . . 9  |-  ( z  e.  ( ( `' F " { ( A  /  y ) } )  i^i  ( `' G " { y } ) )  <->  ( z  e.  ( `' F " { ( A  / 
y ) } )  /\  z  e.  ( `' G " { y } ) ) )
75 anandi 825 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  ( ( F `  z )  =  ( A  /  y )  /\  ( G `  z )  =  y ) )  <->  ( (
z  e.  RR  /\  ( F `  z )  =  ( A  / 
y ) )  /\  ( z  e.  RR  /\  ( G `  z
)  =  y ) ) )
7673, 74, 753bitr4g 288 . . . . . . . 8  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( z  e.  ( ( `' F " { ( A  / 
y ) } )  i^i  ( `' G " { y } ) )  <->  ( z  e.  RR  /\  ( ( F `  z )  =  ( A  / 
y )  /\  ( G `  z )  =  y ) ) ) )
7776adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  y  e.  ( ran  G  \  {
0 } ) )  ->  ( z  e.  ( ( `' F " { ( A  / 
y ) } )  i^i  ( `' G " { y } ) )  <->  ( z  e.  RR  /\  ( ( F `  z )  =  ( A  / 
y )  /\  ( G `  z )  =  y ) ) ) )
78 eldifi 3621 . . . . . . . . . . . 12  |-  ( A  e.  ( CC  \  { 0 } )  ->  A  e.  CC )
7978ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  A  e.  CC )
808ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  G : RR --> RR )
81 frn 5730 . . . . . . . . . . . . . 14  |-  ( G : RR --> RR  ->  ran 
G  C_  RR )
8280, 81syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  ran  G 
C_  RR )
83 simprl 755 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  y  e.  ( ran  G  \  { 0 } ) )
84 eldifsn 4147 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ran  G  \  { 0 } )  <-> 
( y  e.  ran  G  /\  y  =/=  0
) )
8583, 84sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  (
y  e.  ran  G  /\  y  =/=  0
) )
8685simpld 459 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  y  e.  ran  G )
8782, 86sseldd 3500 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  y  e.  RR )
8887recnd 9613 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  y  e.  CC )
8985simprd 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  y  =/=  0 )
9079, 88, 89divcan1d 10312 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  (
( A  /  y
)  x.  y )  =  A )
91 oveq12 6286 . . . . . . . . . . 11  |-  ( ( ( F `  z
)  =  ( A  /  y )  /\  ( G `  z )  =  y )  -> 
( ( F `  z )  x.  ( G `  z )
)  =  ( ( A  /  y )  x.  y ) )
9291eqeq1d 2464 . . . . . . . . . 10  |-  ( ( ( F `  z
)  =  ( A  /  y )  /\  ( G `  z )  =  y )  -> 
( ( ( F `
 z )  x.  ( G `  z
) )  =  A  <-> 
( ( A  / 
y )  x.  y
)  =  A ) )
9390, 92syl5ibrcom 222 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  (
( ( F `  z )  =  ( A  /  y )  /\  ( G `  z )  =  y )  ->  ( ( F `  z )  x.  ( G `  z
) )  =  A ) )
9493anassrs 648 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  e.  ( CC  \  { 0 } ) )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  (
( ( F `  z )  =  ( A  /  y )  /\  ( G `  z )  =  y )  ->  ( ( F `  z )  x.  ( G `  z
) )  =  A ) )
9594imdistanda 693 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  y  e.  ( ran  G  \  {
0 } ) )  ->  ( ( z  e.  RR  /\  (
( F `  z
)  =  ( A  /  y )  /\  ( G `  z )  =  y ) )  ->  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) ) )
9677, 95sylbid 215 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  y  e.  ( ran  G  \  {
0 } ) )  ->  ( z  e.  ( ( `' F " { ( A  / 
y ) } )  i^i  ( `' G " { y } ) )  ->  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) ) )
9796rexlimdva 2950 . . . . 5  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( E. y  e.  ( ran  G  \  { 0 } ) z  e.  ( ( `' F " { ( A  /  y ) } )  i^i  ( `' G " { y } ) )  -> 
( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z )
)  =  A ) ) )
9868, 97impbid 191 . . . 4  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A )  <->  E. y  e.  ( ran  G  \  { 0 } ) z  e.  ( ( `' F " { ( A  /  y ) } )  i^i  ( `' G " { y } ) ) ) )
9917, 25, 983bitrd 279 . . 3  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( z  e.  ( `' ( F  oF  x.  G ) " { A } )  <->  E. y  e.  ( ran  G  \  { 0 } ) z  e.  ( ( `' F " { ( A  / 
y ) } )  i^i  ( `' G " { y } ) ) ) )
100 eliun 4325 . . 3  |-  ( z  e.  U_ y  e.  ( ran  G  \  { 0 } ) ( ( `' F " { ( A  / 
y ) } )  i^i  ( `' G " { y } ) )  <->  E. y  e.  ( ran  G  \  {
0 } ) z  e.  ( ( `' F " { ( A  /  y ) } )  i^i  ( `' G " { y } ) ) )
10199, 100syl6bbr 263 . 2  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( z  e.  ( `' ( F  oF  x.  G ) " { A } )  <-> 
z  e.  U_ y  e.  ( ran  G  \  { 0 } ) ( ( `' F " { ( A  / 
y ) } )  i^i  ( `' G " { y } ) ) ) )
102101eqrdv 2459 1  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( `' ( F  oF  x.  G
) " { A } )  =  U_ y  e.  ( ran  G 
\  { 0 } ) ( ( `' F " { ( A  /  y ) } )  i^i  ( `' G " { y } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2657   E.wrex 2810   _Vcvv 3108    \ cdif 3468    i^i cin 3470    C_ wss 3471   {csn 4022   U_ciun 4320   `'ccnv 4993   dom cdm 4994   ran crn 4995   "cima 4997    Fn wfn 5576   -->wf 5577   ` cfv 5581  (class class class)co 6277    oFcof 6515   CCcc 9481   RRcr 9482   0cc0 9483    x. cmul 9488    / cdiv 10197   S.1citg1 21754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-po 4795  df-so 4796  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6517  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-div 10198  df-sum 13460  df-itg1 21759
This theorem is referenced by:  i1fmul  21833
  Copyright terms: Public domain W3C validator