MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fd Structured version   Unicode version

Theorem i1fd 21134
Description: A simplified set of assumptions to show that a given function is simple. (Contributed by Mario Carneiro, 26-Jun-2014.)
Hypotheses
Ref Expression
i1fd.1  |-  ( ph  ->  F : RR --> RR )
i1fd.2  |-  ( ph  ->  ran  F  e.  Fin )
i1fd.3  |-  ( (
ph  /\  x  e.  ( ran  F  \  {
0 } ) )  ->  ( `' F " { x } )  e.  dom  vol )
i1fd.4  |-  ( (
ph  /\  x  e.  ( ran  F  \  {
0 } ) )  ->  ( vol `  ( `' F " { x } ) )  e.  RR )
Assertion
Ref Expression
i1fd  |-  ( ph  ->  F  e.  dom  S.1 )
Distinct variable groups:    x, F    ph, x

Proof of Theorem i1fd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 i1fd.1 . . . . . . . . 9  |-  ( ph  ->  F : RR --> RR )
21ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  F : RR --> RR )
3 ffun 5556 . . . . . . . 8  |-  ( F : RR --> RR  ->  Fun 
F )
4 funcnvcnv 5471 . . . . . . . 8  |-  ( Fun 
F  ->  Fun  `' `' F )
5 imadif 5488 . . . . . . . 8  |-  ( Fun  `' `' F  ->  ( `' F " ( RR 
\  ( RR  \  x ) ) )  =  ( ( `' F " RR ) 
\  ( `' F " ( RR  \  x
) ) ) )
62, 3, 4, 54syl 21 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  ( `' F "
( RR  \  ( RR  \  x ) ) )  =  ( ( `' F " RR ) 
\  ( `' F " ( RR  \  x
) ) ) )
7 ioof 11379 . . . . . . . . . . . . 13  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
8 frn 5560 . . . . . . . . . . . . 13  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  ran  (,)  C_  ~P RR )
97, 8ax-mp 5 . . . . . . . . . . . 12  |-  ran  (,)  C_ 
~P RR
109sseli 3347 . . . . . . . . . . 11  |-  ( x  e.  ran  (,)  ->  x  e.  ~P RR )
1110elpwid 3865 . . . . . . . . . 10  |-  ( x  e.  ran  (,)  ->  x 
C_  RR )
1211ad2antlr 726 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  x  C_  RR )
13 dfss4 3579 . . . . . . . . 9  |-  ( x 
C_  RR  <->  ( RR  \ 
( RR  \  x
) )  =  x )
1412, 13sylib 196 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  ( RR  \  ( RR  \  x ) )  =  x )
1514imaeq2d 5164 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  ( `' F "
( RR  \  ( RR  \  x ) ) )  =  ( `' F " x ) )
166, 15eqtr3d 2472 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  ( ( `' F " RR )  \  ( `' F " ( RR 
\  x ) ) )  =  ( `' F " x ) )
17 fimacnv 5830 . . . . . . . . 9  |-  ( F : RR --> RR  ->  ( `' F " RR )  =  RR )
182, 17syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  ( `' F " RR )  =  RR )
19 rembl 20997 . . . . . . . 8  |-  RR  e.  dom  vol
2018, 19syl6eqel 2526 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  ( `' F " RR )  e.  dom  vol )
211adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  0  e.  y )  ->  F : RR --> RR )
22 inpreima 5825 . . . . . . . . . . . . . 14  |-  ( Fun 
F  ->  ( `' F " ( y  i^i 
ran  F ) )  =  ( ( `' F " y )  i^i  ( `' F " ran  F ) ) )
23 iunid 4220 . . . . . . . . . . . . . . . 16  |-  U_ x  e.  ( y  i^i  ran  F ) { x }  =  ( y  i^i 
ran  F )
2423imaeq2i 5162 . . . . . . . . . . . . . . 15  |-  ( `' F " U_ x  e.  ( y  i^i  ran  F ) { x }
)  =  ( `' F " ( y  i^i  ran  F )
)
25 imaiun 5957 . . . . . . . . . . . . . . 15  |-  ( `' F " U_ x  e.  ( y  i^i  ran  F ) { x }
)  =  U_ x  e.  ( y  i^i  ran  F ) ( `' F " { x } )
2624, 25eqtr3i 2460 . . . . . . . . . . . . . 14  |-  ( `' F " ( y  i^i  ran  F )
)  =  U_ x  e.  ( y  i^i  ran  F ) ( `' F " { x } )
27 cnvimass 5184 . . . . . . . . . . . . . . . 16  |-  ( `' F " y ) 
C_  dom  F
28 cnvimarndm 5185 . . . . . . . . . . . . . . . 16  |-  ( `' F " ran  F
)  =  dom  F
2927, 28sseqtr4i 3384 . . . . . . . . . . . . . . 15  |-  ( `' F " y ) 
C_  ( `' F " ran  F )
30 df-ss 3337 . . . . . . . . . . . . . . 15  |-  ( ( `' F " y ) 
C_  ( `' F " ran  F )  <->  ( ( `' F " y )  i^i  ( `' F " ran  F ) )  =  ( `' F " y ) )
3129, 30mpbi 208 . . . . . . . . . . . . . 14  |-  ( ( `' F " y )  i^i  ( `' F " ran  F ) )  =  ( `' F " y )
3222, 26, 313eqtr3g 2493 . . . . . . . . . . . . 13  |-  ( Fun 
F  ->  U_ x  e.  ( y  i^i  ran  F ) ( `' F " { x } )  =  ( `' F " y ) )
3321, 3, 323syl 20 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  0  e.  y )  ->  U_ x  e.  ( y  i^i  ran  F ) ( `' F " { x } )  =  ( `' F " y ) )
34 i1fd.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  F  e.  Fin )
3534adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  -.  0  e.  y )  ->  ran  F  e.  Fin )
36 inss2 3566 . . . . . . . . . . . . . 14  |-  ( y  i^i  ran  F )  C_ 
ran  F
37 ssfi 7525 . . . . . . . . . . . . . 14  |-  ( ( ran  F  e.  Fin  /\  ( y  i^i  ran  F )  C_  ran  F )  ->  ( y  i^i 
ran  F )  e. 
Fin )
3835, 36, 37sylancl 662 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  0  e.  y )  ->  (
y  i^i  ran  F )  e.  Fin )
39 simpll 753 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  0  e.  y )  /\  x  e.  (
y  i^i  ran  F ) )  ->  ph )
40 inss1 3565 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  i^i  ran  F )  C_  y
4140sseli 3347 . . . . . . . . . . . . . . . . . . . 20  |-  ( 0  e.  ( y  i^i 
ran  F )  -> 
0  e.  y )
4241con3i 135 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  0  e.  y  ->  -.  0  e.  (
y  i^i  ran  F ) )
4342adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  -.  0  e.  y )  ->  -.  0  e.  ( y  i^i  ran  F ) )
44 disjsn 3931 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  i^i  ran  F )  i^i  { 0 } )  =  (/)  <->  -.  0  e.  ( y  i^i  ran  F ) )
4543, 44sylibr 212 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  -.  0  e.  y )  ->  (
( y  i^i  ran  F )  i^i  { 0 } )  =  (/) )
46 reldisj 3717 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  i^i  ran  F
)  C_  ran  F  -> 
( ( ( y  i^i  ran  F )  i^i  { 0 } )  =  (/)  <->  ( y  i^i 
ran  F )  C_  ( ran  F  \  {
0 } ) ) )
4736, 46ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  i^i  ran  F )  i^i  { 0 } )  =  (/)  <->  (
y  i^i  ran  F ) 
C_  ( ran  F  \  { 0 } ) )
4845, 47sylib 196 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  -.  0  e.  y )  ->  (
y  i^i  ran  F ) 
C_  ( ran  F  \  { 0 } ) )
4948sselda 3351 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  0  e.  y )  /\  x  e.  (
y  i^i  ran  F ) )  ->  x  e.  ( ran  F  \  {
0 } ) )
50 i1fd.3 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( ran  F  \  {
0 } ) )  ->  ( `' F " { x } )  e.  dom  vol )
5139, 49, 50syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  0  e.  y )  /\  x  e.  (
y  i^i  ran  F ) )  ->  ( `' F " { x }
)  e.  dom  vol )
5251ralrimiva 2794 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  0  e.  y )  ->  A. x  e.  ( y  i^i  ran  F ) ( `' F " { x } )  e.  dom  vol )
53 finiunmbl 21000 . . . . . . . . . . . . 13  |-  ( ( ( y  i^i  ran  F )  e.  Fin  /\  A. x  e.  ( y  i^i  ran  F )
( `' F " { x } )  e.  dom  vol )  ->  U_ x  e.  ( y  i^i  ran  F
) ( `' F " { x } )  e.  dom  vol )
5438, 52, 53syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  0  e.  y )  ->  U_ x  e.  ( y  i^i  ran  F ) ( `' F " { x } )  e.  dom  vol )
5533, 54eqeltrrd 2513 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  0  e.  y )  ->  ( `' F " y )  e.  dom  vol )
5655ex 434 . . . . . . . . . 10  |-  ( ph  ->  ( -.  0  e.  y  ->  ( `' F " y )  e. 
dom  vol ) )
5756alrimiv 1685 . . . . . . . . 9  |-  ( ph  ->  A. y ( -.  0  e.  y  -> 
( `' F "
y )  e.  dom  vol ) )
5857ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  A. y ( -.  0  e.  y  -> 
( `' F "
y )  e.  dom  vol ) )
59 elndif 3475 . . . . . . . . 9  |-  ( 0  e.  x  ->  -.  0  e.  ( RR  \  x ) )
6059adantl 466 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  -.  0  e.  ( RR  \  x ) )
61 reex 9365 . . . . . . . . . 10  |-  RR  e.  _V
62 difexg 4435 . . . . . . . . . 10  |-  ( RR  e.  _V  ->  ( RR  \  x )  e. 
_V )
6361, 62ax-mp 5 . . . . . . . . 9  |-  ( RR 
\  x )  e. 
_V
64 eleq2 2499 . . . . . . . . . . 11  |-  ( y  =  ( RR  \  x )  ->  (
0  e.  y  <->  0  e.  ( RR  \  x
) ) )
6564notbid 294 . . . . . . . . . 10  |-  ( y  =  ( RR  \  x )  ->  ( -.  0  e.  y  <->  -.  0  e.  ( RR 
\  x ) ) )
66 imaeq2 5160 . . . . . . . . . . 11  |-  ( y  =  ( RR  \  x )  ->  ( `' F " y )  =  ( `' F " ( RR  \  x
) ) )
6766eleq1d 2504 . . . . . . . . . 10  |-  ( y  =  ( RR  \  x )  ->  (
( `' F "
y )  e.  dom  vol  <->  ( `' F " ( RR 
\  x ) )  e.  dom  vol )
)
6865, 67imbi12d 320 . . . . . . . . 9  |-  ( y  =  ( RR  \  x )  ->  (
( -.  0  e.  y  ->  ( `' F " y )  e. 
dom  vol )  <->  ( -.  0  e.  ( RR  \  x )  ->  ( `' F " ( RR 
\  x ) )  e.  dom  vol )
) )
6963, 68spcv 3058 . . . . . . . 8  |-  ( A. y ( -.  0  e.  y  ->  ( `' F " y )  e.  dom  vol )  ->  ( -.  0  e.  ( RR  \  x
)  ->  ( `' F " ( RR  \  x ) )  e. 
dom  vol ) )
7058, 60, 69sylc 60 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  ( `' F "
( RR  \  x
) )  e.  dom  vol )
71 difmbl 20999 . . . . . . 7  |-  ( ( ( `' F " RR )  e.  dom  vol 
/\  ( `' F " ( RR  \  x
) )  e.  dom  vol )  ->  ( ( `' F " RR ) 
\  ( `' F " ( RR  \  x
) ) )  e. 
dom  vol )
7220, 70, 71syl2anc 661 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  ( ( `' F " RR )  \  ( `' F " ( RR 
\  x ) ) )  e.  dom  vol )
7316, 72eqeltrrd 2513 . . . . 5  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  ( `' F "
x )  e.  dom  vol )
74 eleq2 2499 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
0  e.  y  <->  0  e.  x ) )
7574notbid 294 . . . . . . . . . 10  |-  ( y  =  x  ->  ( -.  0  e.  y  <->  -.  0  e.  x ) )
76 imaeq2 5160 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( `' F " y )  =  ( `' F " x ) )
7776eleq1d 2504 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( `' F "
y )  e.  dom  vol  <->  ( `' F " x )  e.  dom  vol )
)
7875, 77imbi12d 320 . . . . . . . . 9  |-  ( y  =  x  ->  (
( -.  0  e.  y  ->  ( `' F " y )  e. 
dom  vol )  <->  ( -.  0  e.  x  ->  ( `' F " x )  e.  dom  vol )
) )
7978spv 1955 . . . . . . . 8  |-  ( A. y ( -.  0  e.  y  ->  ( `' F " y )  e.  dom  vol )  ->  ( -.  0  e.  x  ->  ( `' F " x )  e. 
dom  vol ) )
8057, 79syl 16 . . . . . . 7  |-  ( ph  ->  ( -.  0  e.  x  ->  ( `' F " x )  e. 
dom  vol ) )
8180imp 429 . . . . . 6  |-  ( (
ph  /\  -.  0  e.  x )  ->  ( `' F " x )  e.  dom  vol )
8281adantlr 714 . . . . 5  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  -.  0  e.  x
)  ->  ( `' F " x )  e. 
dom  vol )
8373, 82pm2.61dan 789 . . . 4  |-  ( (
ph  /\  x  e.  ran  (,) )  ->  ( `' F " x )  e.  dom  vol )
8483ralrimiva 2794 . . 3  |-  ( ph  ->  A. x  e.  ran  (,) ( `' F "
x )  e.  dom  vol )
85 ismbf 21083 . . . 4  |-  ( F : RR --> RR  ->  ( F  e. MblFn  <->  A. x  e.  ran  (,) ( `' F "
x )  e.  dom  vol ) )
861, 85syl 16 . . 3  |-  ( ph  ->  ( F  e. MblFn  <->  A. x  e.  ran  (,) ( `' F " x )  e.  dom  vol )
)
8784, 86mpbird 232 . 2  |-  ( ph  ->  F  e. MblFn )
88 mblvol 20988 . . . . . . . 8  |-  ( ( `' F " y )  e.  dom  vol  ->  ( vol `  ( `' F " y ) )  =  ( vol* `  ( `' F " y ) ) )
8955, 88syl 16 . . . . . . 7  |-  ( (
ph  /\  -.  0  e.  y )  ->  ( vol `  ( `' F " y ) )  =  ( vol* `  ( `' F " y ) ) )
90 mblss 20989 . . . . . . . . 9  |-  ( ( `' F " y )  e.  dom  vol  ->  ( `' F " y ) 
C_  RR )
9155, 90syl 16 . . . . . . . 8  |-  ( (
ph  /\  -.  0  e.  y )  ->  ( `' F " y ) 
C_  RR )
92 mblvol 20988 . . . . . . . . . . 11  |-  ( ( `' F " { x } )  e.  dom  vol 
->  ( vol `  ( `' F " { x } ) )  =  ( vol* `  ( `' F " { x } ) ) )
9351, 92syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  -.  0  e.  y )  /\  x  e.  (
y  i^i  ran  F ) )  ->  ( vol `  ( `' F " { x } ) )  =  ( vol* `  ( `' F " { x }
) ) )
94 i1fd.4 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ran  F  \  {
0 } ) )  ->  ( vol `  ( `' F " { x } ) )  e.  RR )
9539, 49, 94syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  -.  0  e.  y )  /\  x  e.  (
y  i^i  ran  F ) )  ->  ( vol `  ( `' F " { x } ) )  e.  RR )
9693, 95eqeltrrd 2513 . . . . . . . . 9  |-  ( ( ( ph  /\  -.  0  e.  y )  /\  x  e.  (
y  i^i  ran  F ) )  ->  ( vol* `  ( `' F " { x } ) )  e.  RR )
9738, 96fsumrecl 13203 . . . . . . . 8  |-  ( (
ph  /\  -.  0  e.  y )  ->  sum_ x  e.  ( y  i^i  ran  F ) ( vol* `  ( `' F " { x } ) )  e.  RR )
9833fveq2d 5690 . . . . . . . . 9  |-  ( (
ph  /\  -.  0  e.  y )  ->  ( vol* `  U_ x  e.  ( y  i^i  ran  F ) ( `' F " { x } ) )  =  ( vol* `  ( `' F " y ) ) )
99 mblss 20989 . . . . . . . . . . . . 13  |-  ( ( `' F " { x } )  e.  dom  vol 
->  ( `' F " { x } ) 
C_  RR )
10051, 99syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  0  e.  y )  /\  x  e.  (
y  i^i  ran  F ) )  ->  ( `' F " { x }
)  C_  RR )
101100, 96jca 532 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  0  e.  y )  /\  x  e.  (
y  i^i  ran  F ) )  ->  ( ( `' F " { x } )  C_  RR  /\  ( vol* `  ( `' F " { x } ) )  e.  RR ) )
102101ralrimiva 2794 . . . . . . . . . 10  |-  ( (
ph  /\  -.  0  e.  y )  ->  A. x  e.  ( y  i^i  ran  F ) ( ( `' F " { x } )  C_  RR  /\  ( vol* `  ( `' F " { x } ) )  e.  RR ) )
103 ovolfiniun 20959 . . . . . . . . . 10  |-  ( ( ( y  i^i  ran  F )  e.  Fin  /\  A. x  e.  ( y  i^i  ran  F )
( ( `' F " { x } ) 
C_  RR  /\  ( vol* `  ( `' F " { x } ) )  e.  RR ) )  -> 
( vol* `  U_ x  e.  ( y  i^i  ran  F )
( `' F " { x } ) )  <_  sum_ x  e.  ( y  i^i  ran  F ) ( vol* `  ( `' F " { x } ) ) )
10438, 102, 103syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  -.  0  e.  y )  ->  ( vol* `  U_ x  e.  ( y  i^i  ran  F ) ( `' F " { x } ) )  <_  sum_ x  e.  ( y  i^i  ran  F ) ( vol* `  ( `' F " { x } ) ) )
10598, 104eqbrtrrd 4309 . . . . . . . 8  |-  ( (
ph  /\  -.  0  e.  y )  ->  ( vol* `  ( `' F " y ) )  <_  sum_ x  e.  ( y  i^i  ran  F ) ( vol* `  ( `' F " { x } ) ) )
106 ovollecl 20941 . . . . . . . 8  |-  ( ( ( `' F "
y )  C_  RR  /\ 
sum_ x  e.  (
y  i^i  ran  F ) ( vol* `  ( `' F " { x } ) )  e.  RR  /\  ( vol* `  ( `' F " y ) )  <_  sum_ x  e.  ( y  i^i  ran  F
) ( vol* `  ( `' F " { x } ) ) )  ->  ( vol* `  ( `' F " y ) )  e.  RR )
10791, 97, 105, 106syl3anc 1218 . . . . . . 7  |-  ( (
ph  /\  -.  0  e.  y )  ->  ( vol* `  ( `' F " y ) )  e.  RR )
10889, 107eqeltrd 2512 . . . . . 6  |-  ( (
ph  /\  -.  0  e.  y )  ->  ( vol `  ( `' F " y ) )  e.  RR )
109108ex 434 . . . . 5  |-  ( ph  ->  ( -.  0  e.  y  ->  ( vol `  ( `' F "
y ) )  e.  RR ) )
110109alrimiv 1685 . . . 4  |-  ( ph  ->  A. y ( -.  0  e.  y  -> 
( vol `  ( `' F " y ) )  e.  RR ) )
111 neldifsn 3997 . . . 4  |-  -.  0  e.  ( RR  \  {
0 } )
112 difexg 4435 . . . . . 6  |-  ( RR  e.  _V  ->  ( RR  \  { 0 } )  e.  _V )
11361, 112ax-mp 5 . . . . 5  |-  ( RR 
\  { 0 } )  e.  _V
114 eleq2 2499 . . . . . . 7  |-  ( y  =  ( RR  \  { 0 } )  ->  ( 0  e.  y  <->  0  e.  ( RR  \  { 0 } ) ) )
115114notbid 294 . . . . . 6  |-  ( y  =  ( RR  \  { 0 } )  ->  ( -.  0  e.  y  <->  -.  0  e.  ( RR  \  { 0 } ) ) )
116 imaeq2 5160 . . . . . . . 8  |-  ( y  =  ( RR  \  { 0 } )  ->  ( `' F " y )  =  ( `' F " ( RR 
\  { 0 } ) ) )
117116fveq2d 5690 . . . . . . 7  |-  ( y  =  ( RR  \  { 0 } )  ->  ( vol `  ( `' F " y ) )  =  ( vol `  ( `' F "
( RR  \  {
0 } ) ) ) )
118117eleq1d 2504 . . . . . 6  |-  ( y  =  ( RR  \  { 0 } )  ->  ( ( vol `  ( `' F "
y ) )  e.  RR  <->  ( vol `  ( `' F " ( RR 
\  { 0 } ) ) )  e.  RR ) )
119115, 118imbi12d 320 . . . . 5  |-  ( y  =  ( RR  \  { 0 } )  ->  ( ( -.  0  e.  y  -> 
( vol `  ( `' F " y ) )  e.  RR )  <-> 
( -.  0  e.  ( RR  \  {
0 } )  -> 
( vol `  ( `' F " ( RR 
\  { 0 } ) ) )  e.  RR ) ) )
120113, 119spcv 3058 . . . 4  |-  ( A. y ( -.  0  e.  y  ->  ( vol `  ( `' F "
y ) )  e.  RR )  ->  ( -.  0  e.  ( RR  \  { 0 } )  ->  ( vol `  ( `' F "
( RR  \  {
0 } ) ) )  e.  RR ) )
121110, 111, 120mpisyl 18 . . 3  |-  ( ph  ->  ( vol `  ( `' F " ( RR 
\  { 0 } ) ) )  e.  RR )
1221, 34, 1213jca 1168 . 2  |-  ( ph  ->  ( F : RR --> RR  /\  ran  F  e. 
Fin  /\  ( vol `  ( `' F "
( RR  \  {
0 } ) ) )  e.  RR ) )
123 isi1f 21127 . 2  |-  ( F  e.  dom  S.1  <->  ( F  e. MblFn  /\  ( F : RR
--> RR  /\  ran  F  e.  Fin  /\  ( vol `  ( `' F "
( RR  \  {
0 } ) ) )  e.  RR ) ) )
12487, 122, 123sylanbrc 664 1  |-  ( ph  ->  F  e.  dom  S.1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965   A.wal 1367    = wceq 1369    e. wcel 1756   A.wral 2710   _Vcvv 2967    \ cdif 3320    i^i cin 3322    C_ wss 3323   (/)c0 3632   ~Pcpw 3855   {csn 3872   U_ciun 4166   class class class wbr 4287    X. cxp 4833   `'ccnv 4834   dom cdm 4835   ran crn 4836   "cima 4838   Fun wfun 5407   -->wf 5409   ` cfv 5413   Fincfn 7302   RRcr 9273   0cc0 9274   RR*cxr 9409    <_ cle 9411   (,)cioo 11292   sum_csu 13155   vol*covol 20921   volcvol 20922  MblFncmbf 21069   S.1citg1 21070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-q 10946  df-rp 10984  df-xadd 11082  df-ioo 11296  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-sum 13156  df-xmet 17785  df-met 17786  df-ovol 20923  df-vol 20924  df-mbf 21074  df-itg1 21075
This theorem is referenced by:  i1f0  21140  i1f1  21143  i1fadd  21148  i1fmul  21149  i1fmulc  21156  i1fres  21158  mbfi1fseqlem4  21171  itg2addnclem2  28397  ftc1anclem3  28422
  Copyright terms: Public domain W3C validator