MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1faddlem Structured version   Visualization version   Unicode version

Theorem i1faddlem 22651
Description: Decompose the preimage of a sum. (Contributed by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1  |-  ( ph  ->  F  e.  dom  S.1 )
i1fadd.2  |-  ( ph  ->  G  e.  dom  S.1 )
Assertion
Ref Expression
i1faddlem  |-  ( (
ph  /\  A  e.  CC )  ->  ( `' ( F  oF  +  G ) " { A } )  = 
U_ y  e.  ran  G ( ( `' F " { ( A  -  y ) } )  i^i  ( `' G " { y } ) ) )
Distinct variable groups:    y, A    y, F    y, G    ph, y

Proof of Theorem i1faddlem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 i1fadd.1 . . . . . . . . 9  |-  ( ph  ->  F  e.  dom  S.1 )
2 i1ff 22634 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
31, 2syl 17 . . . . . . . 8  |-  ( ph  ->  F : RR --> RR )
4 ffn 5728 . . . . . . . 8  |-  ( F : RR --> RR  ->  F  Fn  RR )
53, 4syl 17 . . . . . . 7  |-  ( ph  ->  F  Fn  RR )
6 i1fadd.2 . . . . . . . . 9  |-  ( ph  ->  G  e.  dom  S.1 )
7 i1ff 22634 . . . . . . . . 9  |-  ( G  e.  dom  S.1  ->  G : RR --> RR )
86, 7syl 17 . . . . . . . 8  |-  ( ph  ->  G : RR --> RR )
9 ffn 5728 . . . . . . . 8  |-  ( G : RR --> RR  ->  G  Fn  RR )
108, 9syl 17 . . . . . . 7  |-  ( ph  ->  G  Fn  RR )
11 reex 9630 . . . . . . . 8  |-  RR  e.  _V
1211a1i 11 . . . . . . 7  |-  ( ph  ->  RR  e.  _V )
13 inidm 3641 . . . . . . 7  |-  ( RR 
i^i  RR )  =  RR
145, 10, 12, 12, 13offn 6542 . . . . . 6  |-  ( ph  ->  ( F  oF  +  G )  Fn  RR )
1514adantr 467 . . . . 5  |-  ( (
ph  /\  A  e.  CC )  ->  ( F  oF  +  G
)  Fn  RR )
16 fniniseg 6003 . . . . 5  |-  ( ( F  oF  +  G )  Fn  RR  ->  ( z  e.  ( `' ( F  oF  +  G ) " { A } )  <-> 
( z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) ) )
1715, 16syl 17 . . . 4  |-  ( (
ph  /\  A  e.  CC )  ->  ( z  e.  ( `' ( F  oF  +  G ) " { A } )  <->  ( z  e.  RR  /\  ( ( F  oF  +  G ) `  z
)  =  A ) ) )
1810ad2antrr 732 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  G  Fn  RR )
19 simprl 764 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  z  e.  RR )
20 fnfvelrn 6019 . . . . . . . 8  |-  ( ( G  Fn  RR  /\  z  e.  RR )  ->  ( G `  z
)  e.  ran  G
)
2118, 19, 20syl2anc 667 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  ( G `  z )  e.  ran  G )
22 simprr 766 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  (
( F  oF  +  G ) `  z )  =  A )
23 eqidd 2452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  RR )  ->  ( F `
 z )  =  ( F `  z
) )
24 eqidd 2452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  RR )  ->  ( G `
 z )  =  ( G `  z
) )
255, 10, 12, 12, 13, 23, 24ofval 6540 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  RR )  ->  ( ( F  oF  +  G ) `  z
)  =  ( ( F `  z )  +  ( G `  z ) ) )
2625ad2ant2r 753 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  (
( F  oF  +  G ) `  z )  =  ( ( F `  z
)  +  ( G `
 z ) ) )
2722, 26eqtr3d 2487 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  A  =  ( ( F `
 z )  +  ( G `  z
) ) )
2827oveq1d 6305 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  ( A  -  ( G `  z ) )  =  ( ( ( F `
 z )  +  ( G `  z
) )  -  ( G `  z )
) )
29 ax-resscn 9596 . . . . . . . . . . . . . 14  |-  RR  C_  CC
30 fss 5737 . . . . . . . . . . . . . 14  |-  ( ( F : RR --> RR  /\  RR  C_  CC )  ->  F : RR --> CC )
313, 29, 30sylancl 668 . . . . . . . . . . . . 13  |-  ( ph  ->  F : RR --> CC )
3231ad2antrr 732 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  F : RR --> CC )
3332, 19ffvelrnd 6023 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  ( F `  z )  e.  CC )
34 fss 5737 . . . . . . . . . . . . . 14  |-  ( ( G : RR --> RR  /\  RR  C_  CC )  ->  G : RR --> CC )
358, 29, 34sylancl 668 . . . . . . . . . . . . 13  |-  ( ph  ->  G : RR --> CC )
3635ad2antrr 732 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  G : RR --> CC )
3736, 19ffvelrnd 6023 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  ( G `  z )  e.  CC )
3833, 37pncand 9987 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  (
( ( F `  z )  +  ( G `  z ) )  -  ( G `
 z ) )  =  ( F `  z ) )
3928, 38eqtr2d 2486 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  ( F `  z )  =  ( A  -  ( G `  z ) ) )
405ad2antrr 732 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  F  Fn  RR )
41 fniniseg 6003 . . . . . . . . . 10  |-  ( F  Fn  RR  ->  (
z  e.  ( `' F " { ( A  -  ( G `
 z ) ) } )  <->  ( z  e.  RR  /\  ( F `
 z )  =  ( A  -  ( G `  z )
) ) ) )
4240, 41syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  (
z  e.  ( `' F " { ( A  -  ( G `
 z ) ) } )  <->  ( z  e.  RR  /\  ( F `
 z )  =  ( A  -  ( G `  z )
) ) ) )
4319, 39, 42mpbir2and 933 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  z  e.  ( `' F " { ( A  -  ( G `  z ) ) } ) )
44 eqidd 2452 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  ( G `  z )  =  ( G `  z ) )
45 fniniseg 6003 . . . . . . . . . 10  |-  ( G  Fn  RR  ->  (
z  e.  ( `' G " { ( G `  z ) } )  <->  ( z  e.  RR  /\  ( G `
 z )  =  ( G `  z
) ) ) )
4618, 45syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  (
z  e.  ( `' G " { ( G `  z ) } )  <->  ( z  e.  RR  /\  ( G `
 z )  =  ( G `  z
) ) ) )
4719, 44, 46mpbir2and 933 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  z  e.  ( `' G " { ( G `  z ) } ) )
4843, 47elind 3618 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  z  e.  ( ( `' F " { ( A  -  ( G `  z ) ) } )  i^i  ( `' G " { ( G `  z ) } ) ) )
49 oveq2 6298 . . . . . . . . . . . 12  |-  ( y  =  ( G `  z )  ->  ( A  -  y )  =  ( A  -  ( G `  z ) ) )
5049sneqd 3980 . . . . . . . . . . 11  |-  ( y  =  ( G `  z )  ->  { ( A  -  y ) }  =  { ( A  -  ( G `
 z ) ) } )
5150imaeq2d 5168 . . . . . . . . . 10  |-  ( y  =  ( G `  z )  ->  ( `' F " { ( A  -  y ) } )  =  ( `' F " { ( A  -  ( G `
 z ) ) } ) )
52 sneq 3978 . . . . . . . . . . 11  |-  ( y  =  ( G `  z )  ->  { y }  =  { ( G `  z ) } )
5352imaeq2d 5168 . . . . . . . . . 10  |-  ( y  =  ( G `  z )  ->  ( `' G " { y } )  =  ( `' G " { ( G `  z ) } ) )
5451, 53ineq12d 3635 . . . . . . . . 9  |-  ( y  =  ( G `  z )  ->  (
( `' F " { ( A  -  y ) } )  i^i  ( `' G " { y } ) )  =  ( ( `' F " { ( A  -  ( G `
 z ) ) } )  i^i  ( `' G " { ( G `  z ) } ) ) )
5554eleq2d 2514 . . . . . . . 8  |-  ( y  =  ( G `  z )  ->  (
z  e.  ( ( `' F " { ( A  -  y ) } )  i^i  ( `' G " { y } ) )  <->  z  e.  ( ( `' F " { ( A  -  ( G `  z ) ) } )  i^i  ( `' G " { ( G `  z ) } ) ) ) )
5655rspcev 3150 . . . . . . 7  |-  ( ( ( G `  z
)  e.  ran  G  /\  z  e.  (
( `' F " { ( A  -  ( G `  z ) ) } )  i^i  ( `' G " { ( G `  z ) } ) ) )  ->  E. y  e.  ran  G  z  e.  ( ( `' F " { ( A  -  y ) } )  i^i  ( `' G " { y } ) ) )
5721, 48, 56syl2anc 667 . . . . . 6  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )  ->  E. y  e.  ran  G  z  e.  ( ( `' F " { ( A  -  y ) } )  i^i  ( `' G " { y } ) ) )
5857ex 436 . . . . 5  |-  ( (
ph  /\  A  e.  CC )  ->  ( ( z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A )  ->  E. y  e.  ran  G  z  e.  ( ( `' F " { ( A  -  y ) } )  i^i  ( `' G " { y } ) ) ) )
59 elin 3617 . . . . . . 7  |-  ( z  e.  ( ( `' F " { ( A  -  y ) } )  i^i  ( `' G " { y } ) )  <->  ( z  e.  ( `' F " { ( A  -  y ) } )  /\  z  e.  ( `' G " { y } ) ) )
605adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  A  e.  CC )  ->  F  Fn  RR )
61 fniniseg 6003 . . . . . . . . . 10  |-  ( F  Fn  RR  ->  (
z  e.  ( `' F " { ( A  -  y ) } )  <->  ( z  e.  RR  /\  ( F `
 z )  =  ( A  -  y
) ) ) )
6260, 61syl 17 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  CC )  ->  ( z  e.  ( `' F " { ( A  -  y ) } )  <-> 
( z  e.  RR  /\  ( F `  z
)  =  ( A  -  y ) ) ) )
6310adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  A  e.  CC )  ->  G  Fn  RR )
64 fniniseg 6003 . . . . . . . . . 10  |-  ( G  Fn  RR  ->  (
z  e.  ( `' G " { y } )  <->  ( z  e.  RR  /\  ( G `
 z )  =  y ) ) )
6563, 64syl 17 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  CC )  ->  ( z  e.  ( `' G " { y } )  <-> 
( z  e.  RR  /\  ( G `  z
)  =  y ) ) )
6662, 65anbi12d 717 . . . . . . . 8  |-  ( (
ph  /\  A  e.  CC )  ->  ( ( z  e.  ( `' F " { ( A  -  y ) } )  /\  z  e.  ( `' G " { y } ) )  <->  ( ( z  e.  RR  /\  ( F `  z )  =  ( A  -  y ) )  /\  ( z  e.  RR  /\  ( G `  z
)  =  y ) ) ) )
67 anandi 837 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  ( ( F `  z )  =  ( A  -  y )  /\  ( G `  z )  =  y ) )  <->  ( (
z  e.  RR  /\  ( F `  z )  =  ( A  -  y ) )  /\  ( z  e.  RR  /\  ( G `  z
)  =  y ) ) )
68 simprl 764 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F `  z )  =  ( A  -  y )  /\  ( G `  z )  =  y ) ) )  -> 
z  e.  RR )
6925ad2ant2r 753 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F `  z )  =  ( A  -  y )  /\  ( G `  z )  =  y ) ) )  -> 
( ( F  oF  +  G ) `  z )  =  ( ( F `  z
)  +  ( G `
 z ) ) )
70 simprrl 774 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F `  z )  =  ( A  -  y )  /\  ( G `  z )  =  y ) ) )  -> 
( F `  z
)  =  ( A  -  y ) )
71 simprrr 775 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F `  z )  =  ( A  -  y )  /\  ( G `  z )  =  y ) ) )  -> 
( G `  z
)  =  y )
7270, 71oveq12d 6308 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F `  z )  =  ( A  -  y )  /\  ( G `  z )  =  y ) ) )  -> 
( ( F `  z )  +  ( G `  z ) )  =  ( ( A  -  y )  +  y ) )
73 simplr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F `  z )  =  ( A  -  y )  /\  ( G `  z )  =  y ) ) )  ->  A  e.  CC )
7435ad2antrr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F `  z )  =  ( A  -  y )  /\  ( G `  z )  =  y ) ) )  ->  G : RR --> CC )
7574, 68ffvelrnd 6023 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F `  z )  =  ( A  -  y )  /\  ( G `  z )  =  y ) ) )  -> 
( G `  z
)  e.  CC )
7671, 75eqeltrrd 2530 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F `  z )  =  ( A  -  y )  /\  ( G `  z )  =  y ) ) )  -> 
y  e.  CC )
7773, 76npcand 9990 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F `  z )  =  ( A  -  y )  /\  ( G `  z )  =  y ) ) )  -> 
( ( A  -  y )  +  y )  =  A )
7869, 72, 773eqtrd 2489 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F `  z )  =  ( A  -  y )  /\  ( G `  z )  =  y ) ) )  -> 
( ( F  oF  +  G ) `  z )  =  A )
7968, 78jca 535 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  CC )  /\  (
z  e.  RR  /\  ( ( F `  z )  =  ( A  -  y )  /\  ( G `  z )  =  y ) ) )  -> 
( z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) )
8079ex 436 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  CC )  ->  ( ( z  e.  RR  /\  ( ( F `  z )  =  ( A  -  y )  /\  ( G `  z )  =  y ) )  ->  (
z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) ) )
8167, 80syl5bir 222 . . . . . . . 8  |-  ( (
ph  /\  A  e.  CC )  ->  ( ( ( z  e.  RR  /\  ( F `  z
)  =  ( A  -  y ) )  /\  ( z  e.  RR  /\  ( G `
 z )  =  y ) )  -> 
( z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) ) )
8266, 81sylbid 219 . . . . . . 7  |-  ( (
ph  /\  A  e.  CC )  ->  ( ( z  e.  ( `' F " { ( A  -  y ) } )  /\  z  e.  ( `' G " { y } ) )  ->  ( z  e.  RR  /\  ( ( F  oF  +  G ) `  z
)  =  A ) ) )
8359, 82syl5bi 221 . . . . . 6  |-  ( (
ph  /\  A  e.  CC )  ->  ( z  e.  ( ( `' F " { ( A  -  y ) } )  i^i  ( `' G " { y } ) )  -> 
( z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) ) )
8483rexlimdvw 2882 . . . . 5  |-  ( (
ph  /\  A  e.  CC )  ->  ( E. y  e.  ran  G  z  e.  ( ( `' F " { ( A  -  y ) } )  i^i  ( `' G " { y } ) )  -> 
( z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A ) ) )
8558, 84impbid 194 . . . 4  |-  ( (
ph  /\  A  e.  CC )  ->  ( ( z  e.  RR  /\  ( ( F  oF  +  G ) `  z )  =  A )  <->  E. y  e.  ran  G  z  e.  ( ( `' F " { ( A  -  y ) } )  i^i  ( `' G " { y } ) ) ) )
8617, 85bitrd 257 . . 3  |-  ( (
ph  /\  A  e.  CC )  ->  ( z  e.  ( `' ( F  oF  +  G ) " { A } )  <->  E. y  e.  ran  G  z  e.  ( ( `' F " { ( A  -  y ) } )  i^i  ( `' G " { y } ) ) ) )
87 eliun 4283 . . 3  |-  ( z  e.  U_ y  e. 
ran  G ( ( `' F " { ( A  -  y ) } )  i^i  ( `' G " { y } ) )  <->  E. y  e.  ran  G  z  e.  ( ( `' F " { ( A  -  y ) } )  i^i  ( `' G " { y } ) ) )
8886, 87syl6bbr 267 . 2  |-  ( (
ph  /\  A  e.  CC )  ->  ( z  e.  ( `' ( F  oF  +  G ) " { A } )  <->  z  e.  U_ y  e.  ran  G
( ( `' F " { ( A  -  y ) } )  i^i  ( `' G " { y } ) ) ) )
8988eqrdv 2449 1  |-  ( (
ph  /\  A  e.  CC )  ->  ( `' ( F  oF  +  G ) " { A } )  = 
U_ y  e.  ran  G ( ( `' F " { ( A  -  y ) } )  i^i  ( `' G " { y } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887   E.wrex 2738   _Vcvv 3045    i^i cin 3403    C_ wss 3404   {csn 3968   U_ciun 4278   `'ccnv 4833   dom cdm 4834   ran crn 4835   "cima 4837    Fn wfn 5577   -->wf 5578   ` cfv 5582  (class class class)co 6290    oFcof 6529   CCcc 9537   RRcr 9538    + caddc 9542    - cmin 9860   S.1citg1 22573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-po 4755  df-so 4756  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-er 7363  df-en 7570  df-dom 7571  df-sdom 7572  df-pnf 9677  df-mnf 9678  df-ltxr 9680  df-sub 9862  df-sum 13753  df-itg1 22578
This theorem is referenced by:  i1fadd  22653  itg1addlem4  22657
  Copyright terms: Public domain W3C validator