HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubval Structured version   Unicode version

Theorem hvsubval 25747
Description: Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubval  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  -h  B
)  =  ( A  +h  ( -u 1  .h  B ) ) )

Proof of Theorem hvsubval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6302 . 2  |-  ( x  =  A  ->  (
x  +h  ( -u
1  .h  y ) )  =  ( A  +h  ( -u 1  .h  y ) ) )
2 oveq2 6303 . . 3  |-  ( y  =  B  ->  ( -u 1  .h  y )  =  ( -u 1  .h  B ) )
32oveq2d 6311 . 2  |-  ( y  =  B  ->  ( A  +h  ( -u 1  .h  y ) )  =  ( A  +h  ( -u 1  .h  B ) ) )
4 df-hvsub 25702 . 2  |-  -h  =  ( x  e.  ~H ,  y  e.  ~H  |->  ( x  +h  ( -u 1  .h  y ) ) )
5 ovex 6320 . 2  |-  ( A  +h  ( -u 1  .h  B ) )  e. 
_V
61, 3, 4, 5ovmpt2 6433 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  -h  B
)  =  ( A  +h  ( -u 1  .h  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767  (class class class)co 6295   1c1 9505   -ucneg 9818   ~Hchil 25650    +h cva 25651    .h csm 25652    -h cmv 25656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-iota 5557  df-fun 5596  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-hvsub 25702
This theorem is referenced by:  hvsubcl  25748  hvsubvali  25751  hvsubid  25757  hvnegid  25758  hv2neg  25759  hvaddsubval  25764  hvsub4  25768  hvaddsub12  25769  hvpncan  25770  hvaddsubass  25772  hvsubass  25775  hvsubdistr1  25780  hvsubdistr2  25781  hvsubcan  25805  hvsub0  25807  his2sub  25823  hhph  25909  shsubcl  25952  shsel3  26047  honegsubi  26529  lnopsubi  26707  lnfnsubi  26779  superpos  27087  cdj1i  27166
  Copyright terms: Public domain W3C validator