HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubval Structured version   Unicode version

Theorem hvsubval 26131
Description: Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubval  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  -h  B
)  =  ( A  +h  ( -u 1  .h  B ) ) )

Proof of Theorem hvsubval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6277 . 2  |-  ( x  =  A  ->  (
x  +h  ( -u
1  .h  y ) )  =  ( A  +h  ( -u 1  .h  y ) ) )
2 oveq2 6278 . . 3  |-  ( y  =  B  ->  ( -u 1  .h  y )  =  ( -u 1  .h  B ) )
32oveq2d 6286 . 2  |-  ( y  =  B  ->  ( A  +h  ( -u 1  .h  y ) )  =  ( A  +h  ( -u 1  .h  B ) ) )
4 df-hvsub 26086 . 2  |-  -h  =  ( x  e.  ~H ,  y  e.  ~H  |->  ( x  +h  ( -u 1  .h  y ) ) )
5 ovex 6298 . 2  |-  ( A  +h  ( -u 1  .h  B ) )  e. 
_V
61, 3, 4, 5ovmpt2 6411 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  -h  B
)  =  ( A  +h  ( -u 1  .h  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823  (class class class)co 6270   1c1 9482   -ucneg 9797   ~Hchil 26034    +h cva 26035    .h csm 26036    -h cmv 26040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-iota 5534  df-fun 5572  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-hvsub 26086
This theorem is referenced by:  hvsubcl  26132  hvsubvali  26135  hvsubid  26141  hvnegid  26142  hv2neg  26143  hvaddsubval  26148  hvsub4  26152  hvaddsub12  26153  hvpncan  26154  hvaddsubass  26156  hvsubass  26159  hvsubdistr1  26164  hvsubdistr2  26165  hvsubcan  26189  hvsub0  26191  his2sub  26207  hhph  26293  shsubcl  26336  shsel3  26431  honegsubi  26913  lnopsubi  27091  lnfnsubi  27163  superpos  27471  cdj1i  27550
  Copyright terms: Public domain W3C validator