HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubval Structured version   Unicode version

Theorem hvsubval 24369
Description: Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubval  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  -h  B
)  =  ( A  +h  ( -u 1  .h  B ) ) )

Proof of Theorem hvsubval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6093 . 2  |-  ( x  =  A  ->  (
x  +h  ( -u
1  .h  y ) )  =  ( A  +h  ( -u 1  .h  y ) ) )
2 oveq2 6094 . . 3  |-  ( y  =  B  ->  ( -u 1  .h  y )  =  ( -u 1  .h  B ) )
32oveq2d 6102 . 2  |-  ( y  =  B  ->  ( A  +h  ( -u 1  .h  y ) )  =  ( A  +h  ( -u 1  .h  B ) ) )
4 df-hvsub 24324 . 2  |-  -h  =  ( x  e.  ~H ,  y  e.  ~H  |->  ( x  +h  ( -u 1  .h  y ) ) )
5 ovex 6111 . 2  |-  ( A  +h  ( -u 1  .h  B ) )  e. 
_V
61, 3, 4, 5ovmpt2 6221 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  -h  B
)  =  ( A  +h  ( -u 1  .h  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756  (class class class)co 6086   1c1 9275   -ucneg 9588   ~Hchil 24272    +h cva 24273    .h csm 24274    -h cmv 24278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pr 4526
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-iota 5376  df-fun 5415  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-hvsub 24324
This theorem is referenced by:  hvsubcl  24370  hvsubvali  24373  hvsubid  24379  hvnegid  24380  hv2neg  24381  hvaddsubval  24386  hvsub4  24390  hvaddsub12  24391  hvpncan  24392  hvaddsubass  24394  hvsubass  24397  hvsubdistr1  24402  hvsubdistr2  24403  hvsubcan  24427  hvsub0  24429  his2sub  24445  hhph  24531  shsubcl  24574  shsel3  24669  honegsubi  25151  lnopsubi  25329  lnfnsubi  25401  superpos  25709  cdj1i  25788
  Copyright terms: Public domain W3C validator