HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvpncan Structured version   Unicode version

Theorem hvpncan 25747
Description: Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
hvpncan  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  +h  B )  -h  B
)  =  A )

Proof of Theorem hvpncan
StepHypRef Expression
1 hvaddcl 25720 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  +h  B
)  e.  ~H )
2 hvsubval 25724 . . 3  |-  ( ( ( A  +h  B
)  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  +h  B )  -h  B
)  =  ( ( A  +h  B )  +h  ( -u 1  .h  B ) ) )
31, 2sylancom 667 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  +h  B )  -h  B
)  =  ( ( A  +h  B )  +h  ( -u 1  .h  B ) ) )
4 neg1cn 10649 . . . . 5  |-  -u 1  e.  CC
5 hvmulcl 25721 . . . . 5  |-  ( (
-u 1  e.  CC  /\  B  e.  ~H )  ->  ( -u 1  .h  B )  e.  ~H )
64, 5mpan 670 . . . 4  |-  ( B  e.  ~H  ->  ( -u 1  .h  B )  e.  ~H )
76ancli 551 . . 3  |-  ( B  e.  ~H  ->  ( B  e.  ~H  /\  ( -u 1  .h  B )  e.  ~H ) )
8 ax-hvass 25710 . . . 4  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  ( -u 1  .h  B )  e.  ~H )  -> 
( ( A  +h  B )  +h  ( -u 1  .h  B ) )  =  ( A  +h  ( B  +h  ( -u 1  .h  B
) ) ) )
983expb 1197 . . 3  |-  ( ( A  e.  ~H  /\  ( B  e.  ~H  /\  ( -u 1  .h  B )  e.  ~H ) )  ->  (
( A  +h  B
)  +h  ( -u
1  .h  B ) )  =  ( A  +h  ( B  +h  ( -u 1  .h  B
) ) ) )
107, 9sylan2 474 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  +h  B )  +h  ( -u 1  .h  B ) )  =  ( A  +h  ( B  +h  ( -u 1  .h  B
) ) ) )
11 hvnegid 25735 . . . 4  |-  ( B  e.  ~H  ->  ( B  +h  ( -u 1  .h  B ) )  =  0h )
1211oveq2d 6310 . . 3  |-  ( B  e.  ~H  ->  ( A  +h  ( B  +h  ( -u 1  .h  B
) ) )  =  ( A  +h  0h ) )
13 ax-hvaddid 25712 . . 3  |-  ( A  e.  ~H  ->  ( A  +h  0h )  =  A )
1412, 13sylan9eqr 2530 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  +h  ( B  +h  ( -u 1  .h  B ) ) )  =  A )
153, 10, 143eqtrd 2512 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  +h  B )  -h  B
)  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767  (class class class)co 6294   CCcc 9500   1c1 9503   -ucneg 9816   ~Hchil 25627    +h cva 25628    .h csm 25629   0hc0v 25632    -h cmv 25633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586  ax-resscn 9559  ax-1cn 9560  ax-icn 9561  ax-addcl 9562  ax-addrcl 9563  ax-mulcl 9564  ax-mulrcl 9565  ax-mulcom 9566  ax-addass 9567  ax-mulass 9568  ax-distr 9569  ax-i2m1 9570  ax-1ne0 9571  ax-1rid 9572  ax-rnegex 9573  ax-rrecex 9574  ax-cnre 9575  ax-pre-lttri 9576  ax-pre-lttrn 9577  ax-pre-ltadd 9578  ax-hfvadd 25708  ax-hvass 25710  ax-hvaddid 25712  ax-hfvmul 25713  ax-hvmulid 25714  ax-hvdistr2 25717  ax-hvmul0 25718
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4251  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-po 4805  df-so 4806  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6255  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-er 7321  df-en 7527  df-dom 7528  df-sdom 7529  df-pnf 9640  df-mnf 9641  df-ltxr 9643  df-sub 9817  df-neg 9818  df-hvsub 25679
This theorem is referenced by:  hvpncan2  25748  mayete3i  26437  mayete3iOLD  26438  lnop0  26676
  Copyright terms: Public domain W3C validator