HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvpncan Structured version   Unicode version

Theorem hvpncan 25821
Description: Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
hvpncan  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  +h  B )  -h  B
)  =  A )

Proof of Theorem hvpncan
StepHypRef Expression
1 hvaddcl 25794 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  +h  B
)  e.  ~H )
2 hvsubval 25798 . . 3  |-  ( ( ( A  +h  B
)  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  +h  B )  -h  B
)  =  ( ( A  +h  B )  +h  ( -u 1  .h  B ) ) )
31, 2sylancom 667 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  +h  B )  -h  B
)  =  ( ( A  +h  B )  +h  ( -u 1  .h  B ) ) )
4 neg1cn 10640 . . . . 5  |-  -u 1  e.  CC
5 hvmulcl 25795 . . . . 5  |-  ( (
-u 1  e.  CC  /\  B  e.  ~H )  ->  ( -u 1  .h  B )  e.  ~H )
64, 5mpan 670 . . . 4  |-  ( B  e.  ~H  ->  ( -u 1  .h  B )  e.  ~H )
76ancli 551 . . 3  |-  ( B  e.  ~H  ->  ( B  e.  ~H  /\  ( -u 1  .h  B )  e.  ~H ) )
8 ax-hvass 25784 . . . 4  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  ( -u 1  .h  B )  e.  ~H )  -> 
( ( A  +h  B )  +h  ( -u 1  .h  B ) )  =  ( A  +h  ( B  +h  ( -u 1  .h  B
) ) ) )
983expb 1196 . . 3  |-  ( ( A  e.  ~H  /\  ( B  e.  ~H  /\  ( -u 1  .h  B )  e.  ~H ) )  ->  (
( A  +h  B
)  +h  ( -u
1  .h  B ) )  =  ( A  +h  ( B  +h  ( -u 1  .h  B
) ) ) )
107, 9sylan2 474 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  +h  B )  +h  ( -u 1  .h  B ) )  =  ( A  +h  ( B  +h  ( -u 1  .h  B
) ) ) )
11 hvnegid 25809 . . . 4  |-  ( B  e.  ~H  ->  ( B  +h  ( -u 1  .h  B ) )  =  0h )
1211oveq2d 6293 . . 3  |-  ( B  e.  ~H  ->  ( A  +h  ( B  +h  ( -u 1  .h  B
) ) )  =  ( A  +h  0h ) )
13 ax-hvaddid 25786 . . 3  |-  ( A  e.  ~H  ->  ( A  +h  0h )  =  A )
1412, 13sylan9eqr 2504 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  +h  ( B  +h  ( -u 1  .h  B ) ) )  =  A )
153, 10, 143eqtrd 2486 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  +h  B )  -h  B
)  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1381    e. wcel 1802  (class class class)co 6277   CCcc 9488   1c1 9491   -ucneg 9806   ~Hchil 25701    +h cva 25702    .h csm 25703   0hc0v 25706    -h cmv 25707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-hfvadd 25782  ax-hvass 25784  ax-hvaddid 25786  ax-hfvmul 25787  ax-hvmulid 25788  ax-hvdistr2 25791  ax-hvmul0 25792
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-po 4786  df-so 4787  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-er 7309  df-en 7515  df-dom 7516  df-sdom 7517  df-pnf 9628  df-mnf 9629  df-ltxr 9631  df-sub 9807  df-neg 9808  df-hvsub 25753
This theorem is referenced by:  hvpncan2  25822  mayete3i  26511  mayete3iOLD  26512  lnop0  26750
  Copyright terms: Public domain W3C validator