HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulcom Structured version   Unicode version

Theorem hvmulcom 26557
Description: Scalar multiplication commutative law. (Contributed by NM, 19-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvmulcom  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  ~H )  ->  ( A  .h  ( B  .h  C ) )  =  ( B  .h  ( A  .h  C )
) )

Proof of Theorem hvmulcom
StepHypRef Expression
1 mulcom 9614 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
21oveq1d 6311 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  .h  C
)  =  ( ( B  x.  A )  .h  C ) )
323adant3 1025 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  ~H )  ->  (
( A  x.  B
)  .h  C )  =  ( ( B  x.  A )  .h  C ) )
4 ax-hvmulass 26521 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  ~H )  ->  (
( A  x.  B
)  .h  C )  =  ( A  .h  ( B  .h  C
) ) )
5 ax-hvmulass 26521 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC  /\  C  e.  ~H )  ->  (
( B  x.  A
)  .h  C )  =  ( B  .h  ( A  .h  C
) ) )
653com12 1209 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  ~H )  ->  (
( B  x.  A
)  .h  C )  =  ( B  .h  ( A  .h  C
) ) )
73, 4, 63eqtr3d 2469 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  ~H )  ->  ( A  .h  ( B  .h  C ) )  =  ( B  .h  ( A  .h  C )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1867  (class class class)co 6296   CCcc 9526    x. cmul 9533   ~Hchil 26433    .h csm 26435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-mulcom 9592  ax-hvmulass 26521
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-rex 2779  df-rab 2782  df-v 3080  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-br 4418  df-iota 5556  df-fv 5600  df-ov 6299
This theorem is referenced by:  hvmulcomi  26561  hvsubdistr1  26563  lnopmi  27514
  Copyright terms: Public domain W3C validator