HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddsubass Structured version   Unicode version

Theorem hvaddsubass 24266
Description: Associativity of sum and difference of Hilbert space vectors. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.)
Assertion
Ref Expression
hvaddsubass  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  +h  B
)  -h  C )  =  ( A  +h  ( B  -h  C
) ) )

Proof of Theorem hvaddsubass
StepHypRef Expression
1 neg1cn 10413 . . . 4  |-  -u 1  e.  CC
2 hvmulcl 24238 . . . 4  |-  ( (
-u 1  e.  CC  /\  C  e.  ~H )  ->  ( -u 1  .h  C )  e.  ~H )
31, 2mpan 663 . . 3  |-  ( C  e.  ~H  ->  ( -u 1  .h  C )  e.  ~H )
4 ax-hvass 24227 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  ( -u 1  .h  C )  e.  ~H )  -> 
( ( A  +h  B )  +h  ( -u 1  .h  C ) )  =  ( A  +h  ( B  +h  ( -u 1  .h  C
) ) ) )
53, 4syl3an3 1246 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  +h  B
)  +h  ( -u
1  .h  C ) )  =  ( A  +h  ( B  +h  ( -u 1  .h  C
) ) ) )
6 hvaddcl 24237 . . . 4  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  +h  B
)  e.  ~H )
7 hvsubval 24241 . . . 4  |-  ( ( ( A  +h  B
)  e.  ~H  /\  C  e.  ~H )  ->  ( ( A  +h  B )  -h  C
)  =  ( ( A  +h  B )  +h  ( -u 1  .h  C ) ) )
86, 7sylan 468 . . 3  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  C  e.  ~H )  ->  ( ( A  +h  B )  -h  C )  =  ( ( A  +h  B
)  +h  ( -u
1  .h  C ) ) )
983impa 1175 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  +h  B
)  -h  C )  =  ( ( A  +h  B )  +h  ( -u 1  .h  C ) ) )
10 hvsubval 24241 . . . 4  |-  ( ( B  e.  ~H  /\  C  e.  ~H )  ->  ( B  -h  C
)  =  ( B  +h  ( -u 1  .h  C ) ) )
11103adant1 999 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( B  -h  C )  =  ( B  +h  ( -u 1  .h  C ) ) )
1211oveq2d 6096 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( A  +h  ( B  -h  C ) )  =  ( A  +h  ( B  +h  ( -u 1  .h  C ) ) ) )
135, 9, 123eqtr4d 2475 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  +h  B
)  -h  C )  =  ( A  +h  ( B  -h  C
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755  (class class class)co 6080   CCcc 9268   1c1 9271   -ucneg 9584   ~Hchil 24144    +h cva 24145    .h csm 24146    -h cmv 24150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-hfvadd 24225  ax-hvass 24227  ax-hfvmul 24230
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-id 4623  df-po 4628  df-so 4629  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-pnf 9408  df-mnf 9409  df-ltxr 9411  df-sub 9585  df-neg 9586  df-hvsub 24196
This theorem is referenced by:  hvpncan3  24267  hvsubass  24269
  Copyright terms: Public domain W3C validator