MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htthlem Unicode version

Theorem htthlem 21327
Description: Lemma for htth 21328. The collection  K, which consists of functions  F ( z ) ( w )  =  <. w  |  T
( z ) >.  =  <. T ( w )  |  z >. for each  z in the unit ball, is a collection of bounded linear functions by ipblnfi 21264, so by the Uniform Boundedness theorem ubth 21282, there is a uniform bound  y on  ||  F ( x )  || for all  x in the unit ball. Then  |  T (
x )  |  ^
2  =  <. T ( x )  |  T
( x ) >.  =  F ( x ) (  T ( x ) )  <_  y  |  T ( x )  |, so  |  T ( x )  |  <_  y and 
T is bounded. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
htth.1  |-  X  =  ( BaseSet `  U )
htth.2  |-  P  =  ( .i OLD `  U
)
htth.3  |-  L  =  ( U  LnOp  U
)
htth.4  |-  B  =  ( U  BLnOp  U )
htthlem.5  |-  N  =  ( normCV `  U )
htthlem.6  |-  U  e. 
CHil OLD
htthlem.7  |-  W  = 
<. <.  +  ,  x.  >. ,  abs >.
htthlem.8  |-  ( ph  ->  T  e.  L )
htthlem.9  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( x P ( T `  y ) )  =  ( ( T `  x ) P y ) )
htthlem.10  |-  F  =  ( z  e.  X  |->  ( w  e.  X  |->  ( w P ( T `  z ) ) ) )
htthlem.11  |-  K  =  ( F " {
z  e.  X  | 
( N `  z
)  <_  1 }
)
Assertion
Ref Expression
htthlem  |-  ( ph  ->  T  e.  B )
Distinct variable groups:    y, w, F    x, w, z, K, y    w, N, x, y, z    w, P, z    w, W, x, y, z    ph, w, x, y, z    w, T, x, y, z    w, U, x, y, z    w, X, x, y, z
Allowed substitution hints:    B( x, y, z, w)    P( x, y)    F( x, z)    L( x, y, z, w)

Proof of Theorem htthlem
StepHypRef Expression
1 htthlem.8 . 2  |-  ( ph  ->  T  e.  L )
2 htthlem.6 . . . . . . . . . 10  |-  U  e. 
CHil OLD
32hlnvi 21301 . . . . . . . . 9  |-  U  e.  NrmCVec
4 htth.1 . . . . . . . . . . . . 13  |-  X  =  ( BaseSet `  U )
5 htth.3 . . . . . . . . . . . . 13  |-  L  =  ( U  LnOp  U
)
64, 4, 5lnof 21163 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  U  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> X )
73, 3, 6mp3an12 1272 . . . . . . . . . . 11  |-  ( T  e.  L  ->  T : X --> X )
81, 7syl 17 . . . . . . . . . 10  |-  ( ph  ->  T : X --> X )
9 ffvelrn 5515 . . . . . . . . . 10  |-  ( ( T : X --> X  /\  x  e.  X )  ->  ( T `  x
)  e.  X )
108, 9sylan 459 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  ( T `  x )  e.  X )
11 htthlem.5 . . . . . . . . . 10  |-  N  =  ( normCV `  U )
124, 11nvcl 21055 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  ( T `  x )  e.  X )  ->  ( N `  ( T `  x ) )  e.  RR )
133, 10, 12sylancr 647 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  ( N `  ( T `  x ) )  e.  RR )
14 ffvelrn 5515 . . . . . . . . . . . . . . . . 17  |-  ( ( T : X --> X  /\  z  e.  X )  ->  ( T `  z
)  e.  X )
158, 14sylan 459 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  z  e.  X )  ->  ( T `  z )  e.  X )
16 htth.2 . . . . . . . . . . . . . . . . 17  |-  P  =  ( .i OLD `  U
)
17 hlph 21298 . . . . . . . . . . . . . . . . . 18  |-  ( U  e.  CHil OLD  ->  U  e.  CPreHil
OLD )
182, 17ax-mp 10 . . . . . . . . . . . . . . . . 17  |-  U  e.  CPreHil
OLD
19 htthlem.7 . . . . . . . . . . . . . . . . 17  |-  W  = 
<. <.  +  ,  x.  >. ,  abs >.
20 eqid 2253 . . . . . . . . . . . . . . . . 17  |-  ( U 
BLnOp  W )  =  ( U  BLnOp  W )
21 eqid 2253 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  X  |->  ( w P ( T `  z ) ) )  =  ( w  e.  X  |->  ( w P ( T `  z
) ) )
224, 16, 18, 19, 20, 21ipblnfi 21264 . . . . . . . . . . . . . . . 16  |-  ( ( T `  z )  e.  X  ->  (
w  e.  X  |->  ( w P ( T `
 z ) ) )  e.  ( U 
BLnOp  W ) )
2315, 22syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  X )  ->  (
w  e.  X  |->  ( w P ( T `
 z ) ) )  e.  ( U 
BLnOp  W ) )
24 htthlem.10 . . . . . . . . . . . . . . 15  |-  F  =  ( z  e.  X  |->  ( w  e.  X  |->  ( w P ( T `  z ) ) ) )
2523, 24fmptd 5536 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : X --> ( U 
BLnOp  W ) )
26 ffun 5248 . . . . . . . . . . . . . 14  |-  ( F : X --> ( U 
BLnOp  W )  ->  Fun  F )
2725, 26syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  Fun  F )
2827adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  Fun  F )
29 id 21 . . . . . . . . . . . . 13  |-  ( w  e.  K  ->  w  e.  K )
30 htthlem.11 . . . . . . . . . . . . 13  |-  K  =  ( F " {
z  e.  X  | 
( N `  z
)  <_  1 }
)
3129, 30syl6eleq 2343 . . . . . . . . . . . 12  |-  ( w  e.  K  ->  w  e.  ( F " {
z  e.  X  | 
( N `  z
)  <_  1 }
) )
32 fvelima 5426 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  w  e.  ( F " {
z  e.  X  | 
( N `  z
)  <_  1 }
) )  ->  E. y  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ( F `  y )  =  w )
3328, 31, 32syl2an 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  X )  /\  w  e.  K )  ->  E. y  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ( F `  y )  =  w )
3433ex 425 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  (
w  e.  K  ->  E. y  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ( F `  y )  =  w ) )
35 fveq2 5377 . . . . . . . . . . . . . . 15  |-  ( z  =  y  ->  ( N `  z )  =  ( N `  y ) )
3635breq1d 3930 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  (
( N `  z
)  <_  1  <->  ( N `  y )  <_  1
) )
3736elrab 2860 . . . . . . . . . . . . 13  |-  ( y  e.  { z  e.  X  |  ( N `
 z )  <_ 
1 }  <->  ( y  e.  X  /\  ( N `  y )  <_  1 ) )
38 fveq2 5377 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  y  ->  ( T `  z )  =  ( T `  y ) )
3938oveq2d 5726 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  y  ->  (
w P ( T `
 z ) )  =  ( w P ( T `  y
) ) )
4039mpteq2dv 4004 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  y  ->  (
w  e.  X  |->  ( w P ( T `
 z ) ) )  =  ( w  e.  X  |->  ( w P ( T `  y ) ) ) )
414hlex 21307 . . . . . . . . . . . . . . . . . . . . 21  |-  X  e. 
_V
4241mptex 5598 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  X  |->  ( w P ( T `  y ) ) )  e.  _V
4340, 24, 42fvmpt 5454 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  X  ->  ( F `  y )  =  ( w  e.  X  |->  ( w P ( T `  y
) ) ) )
4443fveq1d 5379 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  X  ->  (
( F `  y
) `  x )  =  ( ( w  e.  X  |->  ( w P ( T `  y ) ) ) `
 x ) )
45 oveq1 5717 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  x  ->  (
w P ( T `
 y ) )  =  ( x P ( T `  y
) ) )
46 eqid 2253 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  X  |->  ( w P ( T `  y ) ) )  =  ( w  e.  X  |->  ( w P ( T `  y
) ) )
47 ovex 5735 . . . . . . . . . . . . . . . . . . 19  |-  ( x P ( T `  y ) )  e. 
_V
4845, 46, 47fvmpt 5454 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  X  ->  (
( w  e.  X  |->  ( w P ( T `  y ) ) ) `  x
)  =  ( x P ( T `  y ) ) )
4944, 48sylan9eqr 2307 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( F `  y ) `  x
)  =  ( x P ( T `  y ) ) )
5049ad2ant2lr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( F `
 y ) `  x )  =  ( x P ( T `
 y ) ) )
51 htthlem.9 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( x P ( T `  y ) )  =  ( ( T `  x ) P y ) )
52 ra42 2567 . . . . . . . . . . . . . . . . . . 19  |-  ( A. x  e.  X  A. y  e.  X  (
x P ( T `
 y ) )  =  ( ( T `
 x ) P y )  ->  (
( x  e.  X  /\  y  e.  X
)  ->  ( x P ( T `  y ) )  =  ( ( T `  x ) P y ) ) )
5351, 52syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( x  e.  X  /\  y  e.  X )  ->  (
x P ( T `
 y ) )  =  ( ( T `
 x ) P y ) ) )
5453impl 606 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
x P ( T `
 y ) )  =  ( ( T `
 x ) P y ) )
5554adantrr 700 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( x P ( T `  y
) )  =  ( ( T `  x
) P y ) )
5650, 55eqtrd 2285 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( F `
 y ) `  x )  =  ( ( T `  x
) P y ) )
5756fveq2d 5381 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( F `  y
) `  x )
)  =  ( abs `  ( ( T `  x ) P y ) ) )
58 simpl 445 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  X  /\  ( N `  y )  <_  1 )  -> 
y  e.  X )
594, 16dipcl 21118 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  ( T `  x )  e.  X  /\  y  e.  X )  ->  (
( T `  x
) P y )  e.  CC )
603, 59mp3an1 1269 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T `  x
)  e.  X  /\  y  e.  X )  ->  ( ( T `  x ) P y )  e.  CC )
6110, 58, 60syl2an 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( T `
 x ) P y )  e.  CC )
6261abscld 11795 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( T `  x
) P y ) )  e.  RR )
6313adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( N `  ( T `  x ) )  e.  RR )
644, 11nvcl 21055 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  y  e.  X )  ->  ( N `  y )  e.  RR )
653, 64mpan 654 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  X  ->  ( N `  y )  e.  RR )
6665ad2antrl 711 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( N `  y )  e.  RR )
6763, 66remulcld 8743 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  x.  ( N `  y
) )  e.  RR )
684, 11, 16, 18sii 21262 . . . . . . . . . . . . . . . 16  |-  ( ( ( T `  x
)  e.  X  /\  y  e.  X )  ->  ( abs `  (
( T `  x
) P y ) )  <_  ( ( N `  ( T `  x ) )  x.  ( N `  y
) ) )
6910, 58, 68syl2an 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( T `  x
) P y ) )  <_  ( ( N `  ( T `  x ) )  x.  ( N `  y
) ) )
70 1re 8717 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
7170a1i 12 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  1  e.  RR )
724, 11nvge0 21070 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U  e.  NrmCVec  /\  ( T `  x )  e.  X )  ->  0  <_  ( N `  ( T `  x )
) )
733, 10, 72sylancr 647 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  X )  ->  0  <_  ( N `  ( T `  x )
) )
7413, 73jca 520 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  X )  ->  (
( N `  ( T `  x )
)  e.  RR  /\  0  <_  ( N `  ( T `  x ) ) ) )
7574adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  e.  RR  /\  0  <_ 
( N `  ( T `  x )
) ) )
76 simprr 736 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( N `  y )  <_  1
)
77 lemul2a 9491 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N `  y )  e.  RR  /\  1  e.  RR  /\  ( ( N `  ( T `  x ) )  e.  RR  /\  0  <_  ( N `  ( T `  x ) ) ) )  /\  ( N `  y )  <_  1 )  -> 
( ( N `  ( T `  x ) )  x.  ( N `
 y ) )  <_  ( ( N `
 ( T `  x ) )  x.  1 ) )
7866, 71, 75, 76, 77syl31anc 1190 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  x.  ( N `  y
) )  <_  (
( N `  ( T `  x )
)  x.  1 ) )
7963recnd 8741 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( N `  ( T `  x ) )  e.  CC )
8079mulid1d 8732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  x.  1 )  =  ( N `  ( T `
 x ) ) )
8178, 80breqtrd 3944 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  x.  ( N `  y
) )  <_  ( N `  ( T `  x ) ) )
8262, 67, 63, 69, 81letrd 8853 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( T `  x
) P y ) )  <_  ( N `  ( T `  x
) ) )
8357, 82eqbrtrd 3940 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( F `  y
) `  x )
)  <_  ( N `  ( T `  x
) ) )
8437, 83sylan2b 463 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  { z  e.  X  |  ( N `  z )  <_  1 } )  ->  ( abs `  ( ( F `
 y ) `  x ) )  <_ 
( N `  ( T `  x )
) )
85 fveq1 5376 . . . . . . . . . . . . . 14  |-  ( ( F `  y )  =  w  ->  (
( F `  y
) `  x )  =  ( w `  x ) )
8685fveq2d 5381 . . . . . . . . . . . . 13  |-  ( ( F `  y )  =  w  ->  ( abs `  ( ( F `
 y ) `  x ) )  =  ( abs `  (
w `  x )
) )
8786breq1d 3930 . . . . . . . . . . . 12  |-  ( ( F `  y )  =  w  ->  (
( abs `  (
( F `  y
) `  x )
)  <_  ( N `  ( T `  x
) )  <->  ( abs `  ( w `  x
) )  <_  ( N `  ( T `  x ) ) ) )
8884, 87syl5ibcom 213 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  { z  e.  X  |  ( N `  z )  <_  1 } )  ->  (
( F `  y
)  =  w  -> 
( abs `  (
w `  x )
)  <_  ( N `  ( T `  x
) ) ) )
8988rexlimdva 2629 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  ( E. y  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ( F `  y )  =  w  ->  ( abs `  ( w `  x
) )  <_  ( N `  ( T `  x ) ) ) )
9034, 89syld 42 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
w  e.  K  -> 
( abs `  (
w `  x )
)  <_  ( N `  ( T `  x
) ) ) )
9190ralrimiv 2587 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  A. w  e.  K  ( abs `  ( w `  x
) )  <_  ( N `  ( T `  x ) ) )
92 breq2 3924 . . . . . . . . . 10  |-  ( z  =  ( N `  ( T `  x ) )  ->  ( ( abs `  ( w `  x ) )  <_ 
z  <->  ( abs `  (
w `  x )
)  <_  ( N `  ( T `  x
) ) ) )
9392ralbidv 2527 . . . . . . . . 9  |-  ( z  =  ( N `  ( T `  x ) )  ->  ( A. w  e.  K  ( abs `  ( w `  x ) )  <_ 
z  <->  A. w  e.  K  ( abs `  ( w `
 x ) )  <_  ( N `  ( T `  x ) ) ) )
9493rcla4ev 2821 . . . . . . . 8  |-  ( ( ( N `  ( T `  x )
)  e.  RR  /\  A. w  e.  K  ( abs `  ( w `
 x ) )  <_  ( N `  ( T `  x ) ) )  ->  E. z  e.  RR  A. w  e.  K  ( abs `  (
w `  x )
)  <_  z )
9513, 91, 94syl2anc 645 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  E. z  e.  RR  A. w  e.  K  ( abs `  (
w `  x )
)  <_  z )
9695ralrimiva 2588 . . . . . 6  |-  ( ph  ->  A. x  e.  X  E. z  e.  RR  A. w  e.  K  ( abs `  ( w `
 x ) )  <_  z )
97 imassrn 4932 . . . . . . . . 9  |-  ( F
" { z  e.  X  |  ( N `
 z )  <_ 
1 } )  C_  ran  F
9830, 97eqsstri 3129 . . . . . . . 8  |-  K  C_  ran  F
99 frn 5252 . . . . . . . . 9  |-  ( F : X --> ( U 
BLnOp  W )  ->  ran  F 
C_  ( U  BLnOp  W ) )
10025, 99syl 17 . . . . . . . 8  |-  ( ph  ->  ran  F  C_  ( U  BLnOp  W ) )
10198, 100syl5ss 3111 . . . . . . 7  |-  ( ph  ->  K  C_  ( U  BLnOp  W ) )
102 hlobn 21297 . . . . . . . . 9  |-  ( U  e.  CHil OLD  ->  U  e. 
CBan )
1032, 102ax-mp 10 . . . . . . . 8  |-  U  e. 
CBan
10419cnnv 21075 . . . . . . . 8  |-  W  e.  NrmCVec
10519cnnvnm 21080 . . . . . . . . 9  |-  abs  =  ( normCV `  W )
106 eqid 2253 . . . . . . . . 9  |-  ( U
normOp OLD W )  =  ( U normOp OLD W
)
1074, 105, 106ubth 21282 . . . . . . . 8  |-  ( ( U  e.  CBan  /\  W  e.  NrmCVec  /\  K  C_  ( U  BLnOp  W ) )  ->  ( A. x  e.  X  E. z  e.  RR  A. w  e.  K  ( abs `  (
w `  x )
)  <_  z  <->  E. y  e.  RR  A. w  e.  K  ( ( U
normOp OLD W ) `  w )  <_  y
) )
108103, 104, 107mp3an12 1272 . . . . . . 7  |-  ( K 
C_  ( U  BLnOp  W )  ->  ( A. x  e.  X  E. z  e.  RR  A. w  e.  K  ( abs `  ( w `  x
) )  <_  z  <->  E. y  e.  RR  A. w  e.  K  (
( U normOp OLD W
) `  w )  <_  y ) )
109101, 108syl 17 . . . . . 6  |-  ( ph  ->  ( A. x  e.  X  E. z  e.  RR  A. w  e.  K  ( abs `  (
w `  x )
)  <_  z  <->  E. y  e.  RR  A. w  e.  K  ( ( U
normOp OLD W ) `  w )  <_  y
) )
11096, 109mpbid 203 . . . . 5  |-  ( ph  ->  E. y  e.  RR  A. w  e.  K  ( ( U normOp OLD W
) `  w )  <_  y )
111 simpr 449 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( x  e.  X  /\  ( N `
 x )  <_ 
1 ) )
112 fveq2 5377 . . . . . . . . . . . . . . . 16  |-  ( z  =  x  ->  ( N `  z )  =  ( N `  x ) )
113112breq1d 3930 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  (
( N `  z
)  <_  1  <->  ( N `  x )  <_  1
) )
114113elrab 2860 . . . . . . . . . . . . . 14  |-  ( x  e.  { z  e.  X  |  ( N `
 z )  <_ 
1 }  <->  ( x  e.  X  /\  ( N `  x )  <_  1 ) )
115111, 114sylibr 205 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  x  e.  {
z  e.  X  | 
( N `  z
)  <_  1 }
)
116 fdm 5250 . . . . . . . . . . . . . . . . . 18  |-  ( F : X --> ( U 
BLnOp  W )  ->  dom  F  =  X )
11725, 116syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  dom  F  =  X )
118117eleq2d 2320 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( x  e.  dom  F  <-> 
x  e.  X ) )
119118biimpar 473 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  F )
120 funfvima 5605 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( x  e.  {
z  e.  X  | 
( N `  z
)  <_  1 }  ->  ( F `  x
)  e.  ( F
" { z  e.  X  |  ( N `
 z )  <_ 
1 } ) ) )
12127, 120sylan 459 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  dom  F )  ->  (
x  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ->  ( F `  x )  e.  ( F " { z  e.  X  |  ( N `  z )  <_  1 } ) ) )
122119, 121syldan 458 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ->  ( F `  x )  e.  ( F " { z  e.  X  |  ( N `  z )  <_  1 } ) ) )
123122ad2ant2r 730 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( x  e. 
{ z  e.  X  |  ( N `  z )  <_  1 }  ->  ( F `  x )  e.  ( F " { z  e.  X  |  ( N `  z )  <_  1 } ) ) )
124115, 123mpd 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( F `  x )  e.  ( F " { z  e.  X  |  ( N `  z )  <_  1 } ) )
125124, 30syl6eleqr 2344 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( F `  x )  e.  K
)
126 fveq2 5377 . . . . . . . . . . . . 13  |-  ( w  =  ( F `  x )  ->  (
( U normOp OLD W
) `  w )  =  ( ( U
normOp OLD W ) `  ( F `  x ) ) )
127126breq1d 3930 . . . . . . . . . . . 12  |-  ( w  =  ( F `  x )  ->  (
( ( U normOp OLD W ) `  w
)  <_  y  <->  ( ( U normOp OLD W ) `  ( F `  x ) )  <_  y )
)
128127rcla4v 2817 . . . . . . . . . . 11  |-  ( ( F `  x )  e.  K  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w
)  <_  y  ->  ( ( U normOp OLD W
) `  ( F `  x ) )  <_ 
y ) )
129125, 128syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w )  <_  y  ->  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)
13013ad2ant2r 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( N `  ( T `  x
) )  e.  RR )
131130, 130remulcld 8743 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( N `  ( T `  x ) )  x.  ( N `  ( T `  x )
) )  e.  RR )
132 ffvelrn 5515 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : X --> ( U 
BLnOp  W )  /\  x  e.  X )  ->  ( F `  x )  e.  ( U  BLnOp  W ) )
13325, 132sylan 459 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  ( U  BLnOp  W ) )
13419cnnvba 21077 . . . . . . . . . . . . . . . . . . . 20  |-  CC  =  ( BaseSet `  W )
1354, 134, 106, 20nmblore 21194 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  ( F `  x )  e.  ( U  BLnOp  W )
)  ->  ( ( U normOp OLD W ) `  ( F `  x ) )  e.  RR )
1363, 104, 135mp3an12 1272 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  x )  e.  ( U  BLnOp  W )  ->  ( ( U normOp OLD W ) `  ( F `  x ) )  e.  RR )
137133, 136syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  X )  ->  (
( U normOp OLD W
) `  ( F `  x ) )  e.  RR )
138137ad2ant2r 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( U normOp OLD W ) `  ( F `  x ) )  e.  RR )
139138, 130remulcld 8743 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( (
( U normOp OLD W
) `  ( F `  x ) )  x.  ( N `  ( T `  x )
) )  e.  RR )
140 simplr 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  y  e.  RR )
141140, 130remulcld 8743 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( y  x.  ( N `  ( T `  x )
) )  e.  RR )
142 fveq2 5377 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  =  x  ->  ( T `  z )  =  ( T `  x ) )
143142oveq2d 5726 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  =  x  ->  (
w P ( T `
 z ) )  =  ( w P ( T `  x
) ) )
144143mpteq2dv 4004 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  =  x  ->  (
w  e.  X  |->  ( w P ( T `
 z ) ) )  =  ( w  e.  X  |->  ( w P ( T `  x ) ) ) )
14541mptex 5598 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  e.  X  |->  ( w P ( T `  x ) ) )  e.  _V
146144, 24, 145fvmpt 5454 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  X  ->  ( F `  x )  =  ( w  e.  X  |->  ( w P ( T `  x
) ) ) )
147146adantl 454 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  =  ( w  e.  X  |->  ( w P ( T `  x
) ) ) )
148147fveq1d 5379 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  X )  ->  (
( F `  x
) `  ( T `  x ) )  =  ( ( w  e.  X  |->  ( w P ( T `  x
) ) ) `  ( T `  x ) ) )
149 oveq1 5717 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  ( T `  x )  ->  (
w P ( T `
 x ) )  =  ( ( T `
 x ) P ( T `  x
) ) )
150 eqid 2253 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  X  |->  ( w P ( T `  x ) ) )  =  ( w  e.  X  |->  ( w P ( T `  x
) ) )
151 ovex 5735 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( T `  x ) P ( T `  x ) )  e. 
_V
152149, 150, 151fvmpt 5454 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( T `  x )  e.  X  ->  (
( w  e.  X  |->  ( w P ( T `  x ) ) ) `  ( T `  x )
)  =  ( ( T `  x ) P ( T `  x ) ) )
15310, 152syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  X )  ->  (
( w  e.  X  |->  ( w P ( T `  x ) ) ) `  ( T `  x )
)  =  ( ( T `  x ) P ( T `  x ) ) )
154148, 153eqtrd 2285 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  X )  ->  (
( F `  x
) `  ( T `  x ) )  =  ( ( T `  x ) P ( T `  x ) ) )
155154ad2ant2r 730 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( F `  x ) `  ( T `  x
) )  =  ( ( T `  x
) P ( T `
 x ) ) )
15610ad2ant2r 730 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( T `  x )  e.  X
)
1574, 11, 16ipidsq 21116 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U  e.  NrmCVec  /\  ( T `  x )  e.  X )  ->  (
( T `  x
) P ( T `
 x ) )  =  ( ( N `
 ( T `  x ) ) ^
2 ) )
1583, 156, 157sylancr 647 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( T `  x ) P ( T `  x ) )  =  ( ( N `  ( T `  x ) ) ^ 2 ) )
159155, 158eqtrd 2285 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( F `  x ) `  ( T `  x
) )  =  ( ( N `  ( T `  x )
) ^ 2 ) )
160159fveq2d 5381 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( abs `  ( ( F `  x ) `  ( T `  x )
) )  =  ( abs `  ( ( N `  ( T `
 x ) ) ^ 2 ) ) )
161 resqcl 11049 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N `  ( T `
 x ) )  e.  RR  ->  (
( N `  ( T `  x )
) ^ 2 )  e.  RR )
162 sqge0 11058 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N `  ( T `
 x ) )  e.  RR  ->  0  <_  ( ( N `  ( T `  x ) ) ^ 2 ) )
163161, 162absidd 11782 . . . . . . . . . . . . . . . . . 18  |-  ( ( N `  ( T `
 x ) )  e.  RR  ->  ( abs `  ( ( N `
 ( T `  x ) ) ^
2 ) )  =  ( ( N `  ( T `  x ) ) ^ 2 ) )
164130, 163syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( abs `  ( ( N `  ( T `  x ) ) ^ 2 ) )  =  ( ( N `  ( T `
 x ) ) ^ 2 ) )
165130recnd 8741 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( N `  ( T `  x
) )  e.  CC )
166165sqvald 11120 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( N `  ( T `  x ) ) ^
2 )  =  ( ( N `  ( T `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
167160, 164, 1663eqtrd 2289 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( abs `  ( ( F `  x ) `  ( T `  x )
) )  =  ( ( N `  ( T `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
168133ad2ant2r 730 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( F `  x )  e.  ( U  BLnOp  W )
)
1694, 11, 105, 106, 20, 3, 104nmblolbi 21208 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  x
)  e.  ( U 
BLnOp  W )  /\  ( T `  x )  e.  X )  ->  ( abs `  ( ( F `
 x ) `  ( T `  x ) ) )  <_  (
( ( U normOp OLD W ) `  ( F `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
170168, 156, 169syl2anc 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( abs `  ( ( F `  x ) `  ( T `  x )
) )  <_  (
( ( U normOp OLD W ) `  ( F `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
171167, 170eqbrtrrd 3942 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( N `  ( T `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
( ( U normOp OLD W ) `  ( F `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
1723, 156, 72sylancr 647 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  0  <_  ( N `  ( T `
 x ) ) )
173 simprr 736 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( U normOp OLD W ) `  ( F `  x ) )  <_  y )
174138, 140, 130, 172, 173lemul1ad 9576 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( (
( U normOp OLD W
) `  ( F `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
y  x.  ( N `
 ( T `  x ) ) ) )
175131, 139, 141, 171, 174letrd 8853 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( N `  ( T `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
y  x.  ( N `
 ( T `  x ) ) ) )
176 lemul1 9488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N `  ( T `  x )
)  e.  RR  /\  y  e.  RR  /\  (
( N `  ( T `  x )
)  e.  RR  /\  0  <  ( N `  ( T `  x ) ) ) )  -> 
( ( N `  ( T `  x ) )  <_  y  <->  ( ( N `  ( T `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
y  x.  ( N `
 ( T `  x ) ) ) ) )
177176biimprd 216 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N `  ( T `  x )
)  e.  RR  /\  y  e.  RR  /\  (
( N `  ( T `  x )
)  e.  RR  /\  0  <  ( N `  ( T `  x ) ) ) )  -> 
( ( ( N `
 ( T `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
y  x.  ( N `
 ( T `  x ) ) )  ->  ( N `  ( T `  x ) )  <_  y )
)
1781773expia 1158 . . . . . . . . . . . . . . . 16  |-  ( ( ( N `  ( T `  x )
)  e.  RR  /\  y  e.  RR )  ->  ( ( ( N `
 ( T `  x ) )  e.  RR  /\  0  < 
( N `  ( T `  x )
) )  ->  (
( ( N `  ( T `  x ) )  x.  ( N `
 ( T `  x ) ) )  <_  ( y  x.  ( N `  ( T `  x )
) )  ->  ( N `  ( T `  x ) )  <_ 
y ) ) )
179178expdimp 428 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N `  ( T `  x ) )  e.  RR  /\  y  e.  RR )  /\  ( N `  ( T `  x )
)  e.  RR )  ->  ( 0  < 
( N `  ( T `  x )
)  ->  ( (
( N `  ( T `  x )
)  x.  ( N `
 ( T `  x ) ) )  <_  ( y  x.  ( N `  ( T `  x )
) )  ->  ( N `  ( T `  x ) )  <_ 
y ) ) )
180130, 140, 130, 179syl21anc 1186 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  <  ( N `  ( T `  x ) )  ->  ( (
( N `  ( T `  x )
)  x.  ( N `
 ( T `  x ) ) )  <_  ( y  x.  ( N `  ( T `  x )
) )  ->  ( N `  ( T `  x ) )  <_ 
y ) ) )
181175, 180mpid 39 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  <  ( N `  ( T `  x ) )  ->  ( N `  ( T `  x
) )  <_  y
) )
182 0re 8718 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
183182a1i 12 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  0  e.  RR )
1844, 134, 20blof 21193 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  ( F `  x )  e.  ( U  BLnOp  W )
)  ->  ( F `  x ) : X --> CC )
1853, 104, 184mp3an12 1272 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  x )  e.  ( U  BLnOp  W )  ->  ( F `  x ) : X --> CC )
186133, 185syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x ) : X --> CC )
187186ad2ant2r 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( F `  x ) : X --> CC )
1884, 134, 106nmooge0 21175 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  ( F `  x ) : X --> CC )  ->  0  <_ 
( ( U normOp OLD W ) `  ( F `  x )
) )
1893, 104, 188mp3an12 1272 . . . . . . . . . . . . . . . 16  |-  ( ( F `  x ) : X --> CC  ->  0  <_  ( ( U
normOp OLD W ) `  ( F `  x ) ) )
190187, 189syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  0  <_  ( ( U normOp OLD W
) `  ( F `  x ) ) )
191183, 138, 140, 190, 173letrd 8853 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  0  <_  y )
192 breq1 3923 . . . . . . . . . . . . . 14  |-  ( 0  =  ( N `  ( T `  x ) )  ->  ( 0  <_  y  <->  ( N `  ( T `  x
) )  <_  y
) )
193191, 192syl5ibcom 213 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  =  ( N `  ( T `  x ) )  ->  ( N `  ( T `  x
) )  <_  y
) )
194 leloe 8788 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  ( N `  ( T `
 x ) )  e.  RR )  -> 
( 0  <_  ( N `  ( T `  x ) )  <->  ( 0  <  ( N `  ( T `  x ) )  \/  0  =  ( N `  ( T `  x )
) ) ) )
195182, 130, 194sylancr 647 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  <_  ( N `  ( T `  x ) )  <->  ( 0  < 
( N `  ( T `  x )
)  \/  0  =  ( N `  ( T `  x )
) ) ) )
196172, 195mpbid 203 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  <  ( N `  ( T `  x ) )  \/  0  =  ( N `  ( T `  x )
) ) )
197181, 193, 196mpjaod 372 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( N `  ( T `  x
) )  <_  y
)
198197expr 601 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  X )  ->  (
( ( U normOp OLD W ) `  ( F `  x )
)  <_  y  ->  ( N `  ( T `
 x ) )  <_  y ) )
199198adantrr 700 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( ( ( U normOp OLD W ) `  ( F `  x ) )  <_  y  ->  ( N `  ( T `
 x ) )  <_  y ) )
200129, 199syld 42 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w )  <_  y  ->  ( N `  ( T `  x )
)  <_  y )
)
201200expr 601 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  X )  ->  (
( N `  x
)  <_  1  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w
)  <_  y  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
202201com23 74 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  X )  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w
)  <_  y  ->  ( ( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
203202ralrimdva 2595 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. w  e.  K  (
( U normOp OLD W
) `  w )  <_  y  ->  A. x  e.  X  ( ( N `  x )  <_  1  ->  ( N `  ( T `  x
) )  <_  y
) ) )
204203reximdva 2617 . . . . 5  |-  ( ph  ->  ( E. y  e.  RR  A. w  e.  K  ( ( U
normOp OLD W ) `  w )  <_  y  ->  E. y  e.  RR  A. x  e.  X  ( ( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
205110, 204mpd 16 . . . 4  |-  ( ph  ->  E. y  e.  RR  A. x  e.  X  ( ( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) )
206 eqid 2253 . . . . . 6  |-  ( U
normOp OLD U )  =  ( U normOp OLD U
)
2074, 4, 11, 11, 206, 3, 3nmobndi 21183 . . . . 5  |-  ( T : X --> X  -> 
( ( ( U
normOp OLD U ) `  T )  e.  RR  <->  E. y  e.  RR  A. x  e.  X  (
( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
2088, 207syl 17 . . . 4  |-  ( ph  ->  ( ( ( U
normOp OLD U ) `  T )  e.  RR  <->  E. y  e.  RR  A. x  e.  X  (
( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
209205, 208mpbird 225 . . 3  |-  ( ph  ->  ( ( U normOp OLD U ) `  T
)  e.  RR )
210 ltpnf 10342 . . 3  |-  ( ( ( U normOp OLD U
) `  T )  e.  RR  ->  ( ( U normOp OLD U ) `  T )  <  +oo )
211209, 210syl 17 . 2  |-  ( ph  ->  ( ( U normOp OLD U ) `  T
)  <  +oo )
212 htth.4 . . . 4  |-  B  =  ( U  BLnOp  U )
213206, 5, 212isblo 21190 . . 3  |-  ( ( U  e.  NrmCVec  /\  U  e.  NrmCVec )  ->  ( T  e.  B  <->  ( T  e.  L  /\  (
( U normOp OLD U
) `  T )  <  +oo ) ) )
2143, 3, 213mp2an 656 . 2  |-  ( T  e.  B  <->  ( T  e.  L  /\  (
( U normOp OLD U
) `  T )  <  +oo ) )
2151, 211, 214sylanbrc 648 1  |-  ( ph  ->  T  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2509   E.wrex 2510   {crab 2512    C_ wss 3078   <.cop 3547   class class class wbr 3920    e. cmpt 3974   dom cdm 4580   ran crn 4581   "cima 4583   Fun wfun 4586   -->wf 4588   ` cfv 4592  (class class class)co 5710   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622    +oocpnf 8744    < clt 8747    <_ cle 8748   2c2 9675   ^cexp 10982   abscabs 11596   NrmCVeccnv 20970   BaseSetcba 20972   normCVcnmcv 20976   .i OLDcdip 21103    LnOp clno 21148   normOp OLDcnmoo 21149    BLnOp cblo 21150   CPreHil OLDccphlo 21220   CBanccbn 21271   CHil
OLDchlo 21294
This theorem is referenced by:  htth  21328
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-dc 7956  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-sum 12036  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-cn 16789  df-cnp 16790  df-lm 16791  df-t1 16874  df-haus 16875  df-cmp 16946  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-fcls 17468  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-cfil 18513  df-cau 18514  df-cmet 18515  df-grpo 20688  df-gid 20689  df-ginv 20690  df-gdiv 20691  df-ablo 20779  df-vc 20932  df-nv 20978  df-va 20981  df-ba 20982  df-sm 20983  df-0v 20984  df-vs 20985  df-nmcv 20986  df-ims 20987  df-dip 21104  df-lno 21152  df-nmoo 21153  df-blo 21154  df-0o 21155  df-ph 21221  df-cbn 21272  df-hlo 21295
  Copyright terms: Public domain W3C validator