MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyco2 Structured version   Unicode version

Theorem htpyco2 20682
Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
htpyco2.f  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
htpyco2.g  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
htpyco2.p  |-  ( ph  ->  P  e.  ( K  Cn  L ) )
htpyco2.h  |-  ( ph  ->  H  e.  ( F ( J Htpy  K ) G ) )
Assertion
Ref Expression
htpyco2  |-  ( ph  ->  ( P  o.  H
)  e.  ( ( P  o.  F ) ( J Htpy  L ) ( P  o.  G
) ) )

Proof of Theorem htpyco2
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 htpyco2.f . . . 4  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
2 cntop1 18975 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
31, 2syl 16 . . 3  |-  ( ph  ->  J  e.  Top )
4 eqid 2454 . . . 4  |-  U. J  =  U. J
54toptopon 18669 . . 3  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
63, 5sylib 196 . 2  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
7 htpyco2.p . . 3  |-  ( ph  ->  P  e.  ( K  Cn  L ) )
8 cnco 19001 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  P  e.  ( K  Cn  L ) )  -> 
( P  o.  F
)  e.  ( J  Cn  L ) )
91, 7, 8syl2anc 661 . 2  |-  ( ph  ->  ( P  o.  F
)  e.  ( J  Cn  L ) )
10 htpyco2.g . . 3  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
11 cnco 19001 . . 3  |-  ( ( G  e.  ( J  Cn  K )  /\  P  e.  ( K  Cn  L ) )  -> 
( P  o.  G
)  e.  ( J  Cn  L ) )
1210, 7, 11syl2anc 661 . 2  |-  ( ph  ->  ( P  o.  G
)  e.  ( J  Cn  L ) )
136, 1, 10htpycn 20676 . . . 4  |-  ( ph  ->  ( F ( J Htpy 
K ) G ) 
C_  ( ( J 
tX  II )  Cn  K ) )
14 htpyco2.h . . . 4  |-  ( ph  ->  H  e.  ( F ( J Htpy  K ) G ) )
1513, 14sseldd 3464 . . 3  |-  ( ph  ->  H  e.  ( ( J  tX  II )  Cn  K ) )
16 cnco 19001 . . 3  |-  ( ( H  e.  ( ( J  tX  II )  Cn  K )  /\  P  e.  ( K  Cn  L ) )  -> 
( P  o.  H
)  e.  ( ( J  tX  II )  Cn  L ) )
1715, 7, 16syl2anc 661 . 2  |-  ( ph  ->  ( P  o.  H
)  e.  ( ( J  tX  II )  Cn  L ) )
186, 1, 10, 14htpyi 20677 . . . . 5  |-  ( (
ph  /\  s  e.  U. J )  ->  (
( s H 0 )  =  ( F `
 s )  /\  ( s H 1 )  =  ( G `
 s ) ) )
1918simpld 459 . . . 4  |-  ( (
ph  /\  s  e.  U. J )  ->  (
s H 0 )  =  ( F `  s ) )
2019fveq2d 5802 . . 3  |-  ( (
ph  /\  s  e.  U. J )  ->  ( P `  ( s H 0 ) )  =  ( P `  ( F `  s ) ) )
21 simpr 461 . . . . . 6  |-  ( (
ph  /\  s  e.  U. J )  ->  s  e.  U. J )
22 0elunit 11519 . . . . . 6  |-  0  e.  ( 0 [,] 1
)
23 opelxpi 4978 . . . . . 6  |-  ( ( s  e.  U. J  /\  0  e.  (
0 [,] 1 ) )  ->  <. s ,  0 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )
2421, 22, 23sylancl 662 . . . . 5  |-  ( (
ph  /\  s  e.  U. J )  ->  <. s ,  0 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )
25 iitopon 20586 . . . . . . . 8  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
26 txtopon 19295 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  U. J )  /\  II  e.  (TopOn `  ( 0 [,] 1 ) ) )  ->  ( J  tX  II )  e.  (TopOn `  ( U. J  X.  ( 0 [,] 1
) ) ) )
276, 25, 26sylancl 662 . . . . . . 7  |-  ( ph  ->  ( J  tX  II )  e.  (TopOn `  ( U. J  X.  (
0 [,] 1 ) ) ) )
28 cntop2 18976 . . . . . . . . 9  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
291, 28syl 16 . . . . . . . 8  |-  ( ph  ->  K  e.  Top )
30 eqid 2454 . . . . . . . . 9  |-  U. K  =  U. K
3130toptopon 18669 . . . . . . . 8  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
3229, 31sylib 196 . . . . . . 7  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
33 cnf2 18984 . . . . . . 7  |-  ( ( ( J  tX  II )  e.  (TopOn `  ( U. J  X.  (
0 [,] 1 ) ) )  /\  K  e.  (TopOn `  U. K )  /\  H  e.  ( ( J  tX  II )  Cn  K ) )  ->  H : ( U. J  X.  (
0 [,] 1 ) ) --> U. K )
3427, 32, 15, 33syl3anc 1219 . . . . . 6  |-  ( ph  ->  H : ( U. J  X.  ( 0 [,] 1 ) ) --> U. K )
35 fvco3 5876 . . . . . 6  |-  ( ( H : ( U. J  X.  ( 0 [,] 1 ) ) --> U. K  /\  <. s ,  0 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )  ->  (
( P  o.  H
) `  <. s ,  0 >. )  =  ( P `  ( H `
 <. s ,  0
>. ) ) )
3634, 35sylan 471 . . . . 5  |-  ( (
ph  /\  <. s ,  0 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )  ->  (
( P  o.  H
) `  <. s ,  0 >. )  =  ( P `  ( H `
 <. s ,  0
>. ) ) )
3724, 36syldan 470 . . . 4  |-  ( (
ph  /\  s  e.  U. J )  ->  (
( P  o.  H
) `  <. s ,  0 >. )  =  ( P `  ( H `
 <. s ,  0
>. ) ) )
38 df-ov 6202 . . . 4  |-  ( s ( P  o.  H
) 0 )  =  ( ( P  o.  H ) `  <. s ,  0 >. )
39 df-ov 6202 . . . . 5  |-  ( s H 0 )  =  ( H `  <. s ,  0 >. )
4039fveq2i 5801 . . . 4  |-  ( P `
 ( s H 0 ) )  =  ( P `  ( H `  <. s ,  0 >. ) )
4137, 38, 403eqtr4g 2520 . . 3  |-  ( (
ph  /\  s  e.  U. J )  ->  (
s ( P  o.  H ) 0 )  =  ( P `  ( s H 0 ) ) )
424, 30cnf 18981 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
431, 42syl 16 . . . 4  |-  ( ph  ->  F : U. J --> U. K )
44 fvco3 5876 . . . 4  |-  ( ( F : U. J --> U. K  /\  s  e.  U. J )  -> 
( ( P  o.  F ) `  s
)  =  ( P `
 ( F `  s ) ) )
4543, 44sylan 471 . . 3  |-  ( (
ph  /\  s  e.  U. J )  ->  (
( P  o.  F
) `  s )  =  ( P `  ( F `  s ) ) )
4620, 41, 453eqtr4d 2505 . 2  |-  ( (
ph  /\  s  e.  U. J )  ->  (
s ( P  o.  H ) 0 )  =  ( ( P  o.  F ) `  s ) )
4718simprd 463 . . . 4  |-  ( (
ph  /\  s  e.  U. J )  ->  (
s H 1 )  =  ( G `  s ) )
4847fveq2d 5802 . . 3  |-  ( (
ph  /\  s  e.  U. J )  ->  ( P `  ( s H 1 ) )  =  ( P `  ( G `  s ) ) )
49 1elunit 11520 . . . . . 6  |-  1  e.  ( 0 [,] 1
)
50 opelxpi 4978 . . . . . 6  |-  ( ( s  e.  U. J  /\  1  e.  (
0 [,] 1 ) )  ->  <. s ,  1 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )
5121, 49, 50sylancl 662 . . . . 5  |-  ( (
ph  /\  s  e.  U. J )  ->  <. s ,  1 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )
52 fvco3 5876 . . . . . 6  |-  ( ( H : ( U. J  X.  ( 0 [,] 1 ) ) --> U. K  /\  <. s ,  1 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )  ->  (
( P  o.  H
) `  <. s ,  1 >. )  =  ( P `  ( H `
 <. s ,  1
>. ) ) )
5334, 52sylan 471 . . . . 5  |-  ( (
ph  /\  <. s ,  1 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )  ->  (
( P  o.  H
) `  <. s ,  1 >. )  =  ( P `  ( H `
 <. s ,  1
>. ) ) )
5451, 53syldan 470 . . . 4  |-  ( (
ph  /\  s  e.  U. J )  ->  (
( P  o.  H
) `  <. s ,  1 >. )  =  ( P `  ( H `
 <. s ,  1
>. ) ) )
55 df-ov 6202 . . . 4  |-  ( s ( P  o.  H
) 1 )  =  ( ( P  o.  H ) `  <. s ,  1 >. )
56 df-ov 6202 . . . . 5  |-  ( s H 1 )  =  ( H `  <. s ,  1 >. )
5756fveq2i 5801 . . . 4  |-  ( P `
 ( s H 1 ) )  =  ( P `  ( H `  <. s ,  1 >. ) )
5854, 55, 573eqtr4g 2520 . . 3  |-  ( (
ph  /\  s  e.  U. J )  ->  (
s ( P  o.  H ) 1 )  =  ( P `  ( s H 1 ) ) )
594, 30cnf 18981 . . . . 5  |-  ( G  e.  ( J  Cn  K )  ->  G : U. J --> U. K
)
6010, 59syl 16 . . . 4  |-  ( ph  ->  G : U. J --> U. K )
61 fvco3 5876 . . . 4  |-  ( ( G : U. J --> U. K  /\  s  e.  U. J )  -> 
( ( P  o.  G ) `  s
)  =  ( P `
 ( G `  s ) ) )
6260, 61sylan 471 . . 3  |-  ( (
ph  /\  s  e.  U. J )  ->  (
( P  o.  G
) `  s )  =  ( P `  ( G `  s ) ) )
6348, 58, 623eqtr4d 2505 . 2  |-  ( (
ph  /\  s  e.  U. J )  ->  (
s ( P  o.  H ) 1 )  =  ( ( P  o.  G ) `  s ) )
646, 9, 12, 17, 46, 63ishtpyd 20678 1  |-  ( ph  ->  ( P  o.  H
)  e.  ( ( P  o.  F ) ( J Htpy  L ) ( P  o.  G
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   <.cop 3990   U.cuni 4198    X. cxp 4945    o. ccom 4951   -->wf 5521   ` cfv 5525  (class class class)co 6199   0cc0 9392   1c1 9393   [,]cicc 11413   Topctop 18629  TopOnctopon 18630    Cn ccn 18959    tX ctx 19264   IIcii 20582   Htpy chtpy 20670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-1st 6686  df-2nd 6687  df-recs 6941  df-rdg 6975  df-er 7210  df-map 7325  df-en 7420  df-dom 7421  df-sdom 7422  df-sup 7801  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104  df-nn 10433  df-2 10490  df-3 10491  df-n0 10690  df-z 10757  df-uz 10972  df-q 11064  df-rp 11102  df-xneg 11199  df-xadd 11200  df-xmul 11201  df-icc 11417  df-seq 11923  df-exp 11982  df-cj 12705  df-re 12706  df-im 12707  df-sqr 12841  df-abs 12842  df-topgen 14500  df-psmet 17933  df-xmet 17934  df-met 17935  df-bl 17936  df-mopn 17937  df-top 18634  df-bases 18636  df-topon 18637  df-cn 18962  df-tx 19266  df-ii 20584  df-htpy 20673
This theorem is referenced by:  phtpyco2  20693
  Copyright terms: Public domain W3C validator