MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyco2 Structured version   Unicode version

Theorem htpyco2 21769
Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
htpyco2.f  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
htpyco2.g  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
htpyco2.p  |-  ( ph  ->  P  e.  ( K  Cn  L ) )
htpyco2.h  |-  ( ph  ->  H  e.  ( F ( J Htpy  K ) G ) )
Assertion
Ref Expression
htpyco2  |-  ( ph  ->  ( P  o.  H
)  e.  ( ( P  o.  F ) ( J Htpy  L ) ( P  o.  G
) ) )

Proof of Theorem htpyco2
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 htpyco2.f . . . 4  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
2 cntop1 20032 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
31, 2syl 17 . . 3  |-  ( ph  ->  J  e.  Top )
4 eqid 2402 . . . 4  |-  U. J  =  U. J
54toptopon 19724 . . 3  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
63, 5sylib 196 . 2  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
7 htpyco2.p . . 3  |-  ( ph  ->  P  e.  ( K  Cn  L ) )
8 cnco 20058 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  P  e.  ( K  Cn  L ) )  -> 
( P  o.  F
)  e.  ( J  Cn  L ) )
91, 7, 8syl2anc 659 . 2  |-  ( ph  ->  ( P  o.  F
)  e.  ( J  Cn  L ) )
10 htpyco2.g . . 3  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
11 cnco 20058 . . 3  |-  ( ( G  e.  ( J  Cn  K )  /\  P  e.  ( K  Cn  L ) )  -> 
( P  o.  G
)  e.  ( J  Cn  L ) )
1210, 7, 11syl2anc 659 . 2  |-  ( ph  ->  ( P  o.  G
)  e.  ( J  Cn  L ) )
136, 1, 10htpycn 21763 . . . 4  |-  ( ph  ->  ( F ( J Htpy 
K ) G ) 
C_  ( ( J 
tX  II )  Cn  K ) )
14 htpyco2.h . . . 4  |-  ( ph  ->  H  e.  ( F ( J Htpy  K ) G ) )
1513, 14sseldd 3442 . . 3  |-  ( ph  ->  H  e.  ( ( J  tX  II )  Cn  K ) )
16 cnco 20058 . . 3  |-  ( ( H  e.  ( ( J  tX  II )  Cn  K )  /\  P  e.  ( K  Cn  L ) )  -> 
( P  o.  H
)  e.  ( ( J  tX  II )  Cn  L ) )
1715, 7, 16syl2anc 659 . 2  |-  ( ph  ->  ( P  o.  H
)  e.  ( ( J  tX  II )  Cn  L ) )
186, 1, 10, 14htpyi 21764 . . . . 5  |-  ( (
ph  /\  s  e.  U. J )  ->  (
( s H 0 )  =  ( F `
 s )  /\  ( s H 1 )  =  ( G `
 s ) ) )
1918simpld 457 . . . 4  |-  ( (
ph  /\  s  e.  U. J )  ->  (
s H 0 )  =  ( F `  s ) )
2019fveq2d 5852 . . 3  |-  ( (
ph  /\  s  e.  U. J )  ->  ( P `  ( s H 0 ) )  =  ( P `  ( F `  s ) ) )
21 simpr 459 . . . . . 6  |-  ( (
ph  /\  s  e.  U. J )  ->  s  e.  U. J )
22 0elunit 11690 . . . . . 6  |-  0  e.  ( 0 [,] 1
)
23 opelxpi 4854 . . . . . 6  |-  ( ( s  e.  U. J  /\  0  e.  (
0 [,] 1 ) )  ->  <. s ,  0 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )
2421, 22, 23sylancl 660 . . . . 5  |-  ( (
ph  /\  s  e.  U. J )  ->  <. s ,  0 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )
25 iitopon 21673 . . . . . . . 8  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
26 txtopon 20382 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  U. J )  /\  II  e.  (TopOn `  ( 0 [,] 1 ) ) )  ->  ( J  tX  II )  e.  (TopOn `  ( U. J  X.  ( 0 [,] 1
) ) ) )
276, 25, 26sylancl 660 . . . . . . 7  |-  ( ph  ->  ( J  tX  II )  e.  (TopOn `  ( U. J  X.  (
0 [,] 1 ) ) ) )
28 cntop2 20033 . . . . . . . . 9  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
291, 28syl 17 . . . . . . . 8  |-  ( ph  ->  K  e.  Top )
30 eqid 2402 . . . . . . . . 9  |-  U. K  =  U. K
3130toptopon 19724 . . . . . . . 8  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
3229, 31sylib 196 . . . . . . 7  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
33 cnf2 20041 . . . . . . 7  |-  ( ( ( J  tX  II )  e.  (TopOn `  ( U. J  X.  (
0 [,] 1 ) ) )  /\  K  e.  (TopOn `  U. K )  /\  H  e.  ( ( J  tX  II )  Cn  K ) )  ->  H : ( U. J  X.  (
0 [,] 1 ) ) --> U. K )
3427, 32, 15, 33syl3anc 1230 . . . . . 6  |-  ( ph  ->  H : ( U. J  X.  ( 0 [,] 1 ) ) --> U. K )
35 fvco3 5925 . . . . . 6  |-  ( ( H : ( U. J  X.  ( 0 [,] 1 ) ) --> U. K  /\  <. s ,  0 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )  ->  (
( P  o.  H
) `  <. s ,  0 >. )  =  ( P `  ( H `
 <. s ,  0
>. ) ) )
3634, 35sylan 469 . . . . 5  |-  ( (
ph  /\  <. s ,  0 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )  ->  (
( P  o.  H
) `  <. s ,  0 >. )  =  ( P `  ( H `
 <. s ,  0
>. ) ) )
3724, 36syldan 468 . . . 4  |-  ( (
ph  /\  s  e.  U. J )  ->  (
( P  o.  H
) `  <. s ,  0 >. )  =  ( P `  ( H `
 <. s ,  0
>. ) ) )
38 df-ov 6280 . . . 4  |-  ( s ( P  o.  H
) 0 )  =  ( ( P  o.  H ) `  <. s ,  0 >. )
39 df-ov 6280 . . . . 5  |-  ( s H 0 )  =  ( H `  <. s ,  0 >. )
4039fveq2i 5851 . . . 4  |-  ( P `
 ( s H 0 ) )  =  ( P `  ( H `  <. s ,  0 >. ) )
4137, 38, 403eqtr4g 2468 . . 3  |-  ( (
ph  /\  s  e.  U. J )  ->  (
s ( P  o.  H ) 0 )  =  ( P `  ( s H 0 ) ) )
424, 30cnf 20038 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
431, 42syl 17 . . . 4  |-  ( ph  ->  F : U. J --> U. K )
44 fvco3 5925 . . . 4  |-  ( ( F : U. J --> U. K  /\  s  e.  U. J )  -> 
( ( P  o.  F ) `  s
)  =  ( P `
 ( F `  s ) ) )
4543, 44sylan 469 . . 3  |-  ( (
ph  /\  s  e.  U. J )  ->  (
( P  o.  F
) `  s )  =  ( P `  ( F `  s ) ) )
4620, 41, 453eqtr4d 2453 . 2  |-  ( (
ph  /\  s  e.  U. J )  ->  (
s ( P  o.  H ) 0 )  =  ( ( P  o.  F ) `  s ) )
4718simprd 461 . . . 4  |-  ( (
ph  /\  s  e.  U. J )  ->  (
s H 1 )  =  ( G `  s ) )
4847fveq2d 5852 . . 3  |-  ( (
ph  /\  s  e.  U. J )  ->  ( P `  ( s H 1 ) )  =  ( P `  ( G `  s ) ) )
49 1elunit 11691 . . . . . 6  |-  1  e.  ( 0 [,] 1
)
50 opelxpi 4854 . . . . . 6  |-  ( ( s  e.  U. J  /\  1  e.  (
0 [,] 1 ) )  ->  <. s ,  1 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )
5121, 49, 50sylancl 660 . . . . 5  |-  ( (
ph  /\  s  e.  U. J )  ->  <. s ,  1 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )
52 fvco3 5925 . . . . . 6  |-  ( ( H : ( U. J  X.  ( 0 [,] 1 ) ) --> U. K  /\  <. s ,  1 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )  ->  (
( P  o.  H
) `  <. s ,  1 >. )  =  ( P `  ( H `
 <. s ,  1
>. ) ) )
5334, 52sylan 469 . . . . 5  |-  ( (
ph  /\  <. s ,  1 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )  ->  (
( P  o.  H
) `  <. s ,  1 >. )  =  ( P `  ( H `
 <. s ,  1
>. ) ) )
5451, 53syldan 468 . . . 4  |-  ( (
ph  /\  s  e.  U. J )  ->  (
( P  o.  H
) `  <. s ,  1 >. )  =  ( P `  ( H `
 <. s ,  1
>. ) ) )
55 df-ov 6280 . . . 4  |-  ( s ( P  o.  H
) 1 )  =  ( ( P  o.  H ) `  <. s ,  1 >. )
56 df-ov 6280 . . . . 5  |-  ( s H 1 )  =  ( H `  <. s ,  1 >. )
5756fveq2i 5851 . . . 4  |-  ( P `
 ( s H 1 ) )  =  ( P `  ( H `  <. s ,  1 >. ) )
5854, 55, 573eqtr4g 2468 . . 3  |-  ( (
ph  /\  s  e.  U. J )  ->  (
s ( P  o.  H ) 1 )  =  ( P `  ( s H 1 ) ) )
594, 30cnf 20038 . . . . 5  |-  ( G  e.  ( J  Cn  K )  ->  G : U. J --> U. K
)
6010, 59syl 17 . . . 4  |-  ( ph  ->  G : U. J --> U. K )
61 fvco3 5925 . . . 4  |-  ( ( G : U. J --> U. K  /\  s  e.  U. J )  -> 
( ( P  o.  G ) `  s
)  =  ( P `
 ( G `  s ) ) )
6260, 61sylan 469 . . 3  |-  ( (
ph  /\  s  e.  U. J )  ->  (
( P  o.  G
) `  s )  =  ( P `  ( G `  s ) ) )
6348, 58, 623eqtr4d 2453 . 2  |-  ( (
ph  /\  s  e.  U. J )  ->  (
s ( P  o.  H ) 1 )  =  ( ( P  o.  G ) `  s ) )
646, 9, 12, 17, 46, 63ishtpyd 21765 1  |-  ( ph  ->  ( P  o.  H
)  e.  ( ( P  o.  F ) ( J Htpy  L ) ( P  o.  G
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   <.cop 3977   U.cuni 4190    X. cxp 4820    o. ccom 4826   -->wf 5564   ` cfv 5568  (class class class)co 6277   0cc0 9521   1c1 9522   [,]cicc 11584   Topctop 19684  TopOnctopon 19685    Cn ccn 20016    tX ctx 20351   IIcii 21669   Htpy chtpy 21757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-pre-sup 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-er 7347  df-map 7458  df-en 7554  df-dom 7555  df-sdom 7556  df-sup 7934  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-nn 10576  df-2 10634  df-3 10635  df-n0 10836  df-z 10905  df-uz 11127  df-q 11227  df-rp 11265  df-xneg 11370  df-xadd 11371  df-xmul 11372  df-icc 11588  df-seq 12150  df-exp 12209  df-cj 13079  df-re 13080  df-im 13081  df-sqrt 13215  df-abs 13216  df-topgen 15056  df-psmet 18729  df-xmet 18730  df-met 18731  df-bl 18732  df-mopn 18733  df-top 19689  df-bases 19691  df-topon 19692  df-cn 20019  df-tx 20353  df-ii 21671  df-htpy 21760
This theorem is referenced by:  phtpyco2  21780
  Copyright terms: Public domain W3C validator