MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyco1 Unicode version

Theorem htpyco1 18956
Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
htpyco1.n  |-  N  =  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  ( ( P `  x ) H y ) )
htpyco1.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
htpyco1.p  |-  ( ph  ->  P  e.  ( J  Cn  K ) )
htpyco1.f  |-  ( ph  ->  F  e.  ( K  Cn  L ) )
htpyco1.g  |-  ( ph  ->  G  e.  ( K  Cn  L ) )
htpyco1.h  |-  ( ph  ->  H  e.  ( F ( K Htpy  L ) G ) )
Assertion
Ref Expression
htpyco1  |-  ( ph  ->  N  e.  ( ( F  o.  P ) ( J Htpy  L ) ( G  o.  P
) ) )
Distinct variable groups:    x, y, H    x, K, y    x, L, y    ph, x, y   
x, J, y    x, P, y    x, X, y
Allowed substitution hints:    F( x, y)    G( x, y)    N( x, y)

Proof of Theorem htpyco1
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 htpyco1.j . 2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 htpyco1.p . . 3  |-  ( ph  ->  P  e.  ( J  Cn  K ) )
3 htpyco1.f . . 3  |-  ( ph  ->  F  e.  ( K  Cn  L ) )
4 cnco 17284 . . 3  |-  ( ( P  e.  ( J  Cn  K )  /\  F  e.  ( K  Cn  L ) )  -> 
( F  o.  P
)  e.  ( J  Cn  L ) )
52, 3, 4syl2anc 643 . 2  |-  ( ph  ->  ( F  o.  P
)  e.  ( J  Cn  L ) )
6 htpyco1.g . . 3  |-  ( ph  ->  G  e.  ( K  Cn  L ) )
7 cnco 17284 . . 3  |-  ( ( P  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( G  o.  P
)  e.  ( J  Cn  L ) )
82, 6, 7syl2anc 643 . 2  |-  ( ph  ->  ( G  o.  P
)  e.  ( J  Cn  L ) )
9 htpyco1.n . . 3  |-  N  =  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  ( ( P `  x ) H y ) )
10 iitopon 18862 . . . . 5  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
1110a1i 11 . . . 4  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
121, 11cnmpt1st 17653 . . . . 5  |-  ( ph  ->  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  x )  e.  ( ( J  tX  II )  Cn  J ) )
131, 11, 12, 2cnmpt21f 17657 . . . 4  |-  ( ph  ->  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  ( P `  x
) )  e.  ( ( J  tX  II )  Cn  K ) )
141, 11cnmpt2nd 17654 . . . 4  |-  ( ph  ->  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  y )  e.  ( ( J  tX  II )  Cn  II ) )
15 cntop2 17259 . . . . . . . 8  |-  ( P  e.  ( J  Cn  K )  ->  K  e.  Top )
162, 15syl 16 . . . . . . 7  |-  ( ph  ->  K  e.  Top )
17 eqid 2404 . . . . . . . 8  |-  U. K  =  U. K
1817toptopon 16953 . . . . . . 7  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
1916, 18sylib 189 . . . . . 6  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
2019, 3, 6htpycn 18951 . . . . 5  |-  ( ph  ->  ( F ( K Htpy 
L ) G ) 
C_  ( ( K 
tX  II )  Cn  L ) )
21 htpyco1.h . . . . 5  |-  ( ph  ->  H  e.  ( F ( K Htpy  L ) G ) )
2220, 21sseldd 3309 . . . 4  |-  ( ph  ->  H  e.  ( ( K  tX  II )  Cn  L ) )
231, 11, 13, 14, 22cnmpt22f 17660 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  ( ( P `  x ) H y ) )  e.  ( ( J  tX  II )  Cn  L ) )
249, 23syl5eqel 2488 . 2  |-  ( ph  ->  N  e.  ( ( J  tX  II )  Cn  L ) )
25 cnf2 17267 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  P  e.  ( J  Cn  K ) )  ->  P : X
--> U. K )
261, 19, 2, 25syl3anc 1184 . . . . . 6  |-  ( ph  ->  P : X --> U. K
)
2726ffvelrnda 5829 . . . . 5  |-  ( (
ph  /\  s  e.  X )  ->  ( P `  s )  e.  U. K )
2819, 3, 6, 21htpyi 18952 . . . . 5  |-  ( (
ph  /\  ( P `  s )  e.  U. K )  ->  (
( ( P `  s ) H 0 )  =  ( F `
 ( P `  s ) )  /\  ( ( P `  s ) H 1 )  =  ( G `
 ( P `  s ) ) ) )
2927, 28syldan 457 . . . 4  |-  ( (
ph  /\  s  e.  X )  ->  (
( ( P `  s ) H 0 )  =  ( F `
 ( P `  s ) )  /\  ( ( P `  s ) H 1 )  =  ( G `
 ( P `  s ) ) ) )
3029simpld 446 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
( P `  s
) H 0 )  =  ( F `  ( P `  s ) ) )
31 simpr 448 . . . 4  |-  ( (
ph  /\  s  e.  X )  ->  s  e.  X )
32 0elunit 10971 . . . 4  |-  0  e.  ( 0 [,] 1
)
33 fveq2 5687 . . . . . 6  |-  ( x  =  s  ->  ( P `  x )  =  ( P `  s ) )
34 id 20 . . . . . 6  |-  ( y  =  0  ->  y  =  0 )
3533, 34oveqan12d 6059 . . . . 5  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( ( P `
 x ) H y )  =  ( ( P `  s
) H 0 ) )
36 ovex 6065 . . . . 5  |-  ( ( P `  s ) H 0 )  e. 
_V
3735, 9, 36ovmpt2a 6163 . . . 4  |-  ( ( s  e.  X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( s N 0 )  =  ( ( P `  s
) H 0 ) )
3831, 32, 37sylancl 644 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 0 )  =  ( ( P `
 s ) H 0 ) )
39 fvco3 5759 . . . 4  |-  ( ( P : X --> U. K  /\  s  e.  X
)  ->  ( ( F  o.  P ) `  s )  =  ( F `  ( P `
 s ) ) )
4026, 39sylan 458 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
( F  o.  P
) `  s )  =  ( F `  ( P `  s ) ) )
4130, 38, 403eqtr4d 2446 . 2  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 0 )  =  ( ( F  o.  P ) `  s ) )
4229simprd 450 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
( P `  s
) H 1 )  =  ( G `  ( P `  s ) ) )
43 1elunit 10972 . . . 4  |-  1  e.  ( 0 [,] 1
)
44 id 20 . . . . . 6  |-  ( y  =  1  ->  y  =  1 )
4533, 44oveqan12d 6059 . . . . 5  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( P `
 x ) H y )  =  ( ( P `  s
) H 1 ) )
46 ovex 6065 . . . . 5  |-  ( ( P `  s ) H 1 )  e. 
_V
4745, 9, 46ovmpt2a 6163 . . . 4  |-  ( ( s  e.  X  /\  1  e.  ( 0 [,] 1 ) )  ->  ( s N 1 )  =  ( ( P `  s
) H 1 ) )
4831, 43, 47sylancl 644 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 1 )  =  ( ( P `
 s ) H 1 ) )
49 fvco3 5759 . . . 4  |-  ( ( P : X --> U. K  /\  s  e.  X
)  ->  ( ( G  o.  P ) `  s )  =  ( G `  ( P `
 s ) ) )
5026, 49sylan 458 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
( G  o.  P
) `  s )  =  ( G `  ( P `  s ) ) )
5142, 48, 503eqtr4d 2446 . 2  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 1 )  =  ( ( G  o.  P ) `  s ) )
521, 5, 8, 24, 41, 51ishtpyd 18953 1  |-  ( ph  ->  N  e.  ( ( F  o.  P ) ( J Htpy  L ) ( G  o.  P
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   U.cuni 3975    o. ccom 4841   -->wf 5409   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   0cc0 8946   1c1 8947   [,]cicc 10875   Topctop 16913  TopOnctopon 16914    Cn ccn 17242    tX ctx 17545   IIcii 18858   Htpy chtpy 18945
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-icc 10879  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-topgen 13622  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-top 16918  df-bases 16920  df-topon 16921  df-cn 17245  df-tx 17547  df-ii 18860  df-htpy 18948
  Copyright terms: Public domain W3C validator