MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyco1 Structured version   Unicode version

Theorem htpyco1 21346
Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
htpyco1.n  |-  N  =  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  ( ( P `  x ) H y ) )
htpyco1.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
htpyco1.p  |-  ( ph  ->  P  e.  ( J  Cn  K ) )
htpyco1.f  |-  ( ph  ->  F  e.  ( K  Cn  L ) )
htpyco1.g  |-  ( ph  ->  G  e.  ( K  Cn  L ) )
htpyco1.h  |-  ( ph  ->  H  e.  ( F ( K Htpy  L ) G ) )
Assertion
Ref Expression
htpyco1  |-  ( ph  ->  N  e.  ( ( F  o.  P ) ( J Htpy  L ) ( G  o.  P
) ) )
Distinct variable groups:    x, y, H    x, K, y    x, L, y    ph, x, y   
x, J, y    x, P, y    x, X, y
Allowed substitution hints:    F( x, y)    G( x, y)    N( x, y)

Proof of Theorem htpyco1
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 htpyco1.j . 2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 htpyco1.p . . 3  |-  ( ph  ->  P  e.  ( J  Cn  K ) )
3 htpyco1.f . . 3  |-  ( ph  ->  F  e.  ( K  Cn  L ) )
4 cnco 19635 . . 3  |-  ( ( P  e.  ( J  Cn  K )  /\  F  e.  ( K  Cn  L ) )  -> 
( F  o.  P
)  e.  ( J  Cn  L ) )
52, 3, 4syl2anc 661 . 2  |-  ( ph  ->  ( F  o.  P
)  e.  ( J  Cn  L ) )
6 htpyco1.g . . 3  |-  ( ph  ->  G  e.  ( K  Cn  L ) )
7 cnco 19635 . . 3  |-  ( ( P  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( G  o.  P
)  e.  ( J  Cn  L ) )
82, 6, 7syl2anc 661 . 2  |-  ( ph  ->  ( G  o.  P
)  e.  ( J  Cn  L ) )
9 htpyco1.n . . 3  |-  N  =  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  ( ( P `  x ) H y ) )
10 iitopon 21251 . . . . 5  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
1110a1i 11 . . . 4  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
121, 11cnmpt1st 20037 . . . . 5  |-  ( ph  ->  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  x )  e.  ( ( J  tX  II )  Cn  J ) )
131, 11, 12, 2cnmpt21f 20041 . . . 4  |-  ( ph  ->  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  ( P `  x
) )  e.  ( ( J  tX  II )  Cn  K ) )
141, 11cnmpt2nd 20038 . . . 4  |-  ( ph  ->  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  y )  e.  ( ( J  tX  II )  Cn  II ) )
15 cntop2 19610 . . . . . . . 8  |-  ( P  e.  ( J  Cn  K )  ->  K  e.  Top )
162, 15syl 16 . . . . . . 7  |-  ( ph  ->  K  e.  Top )
17 eqid 2467 . . . . . . . 8  |-  U. K  =  U. K
1817toptopon 19303 . . . . . . 7  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
1916, 18sylib 196 . . . . . 6  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
2019, 3, 6htpycn 21341 . . . . 5  |-  ( ph  ->  ( F ( K Htpy 
L ) G ) 
C_  ( ( K 
tX  II )  Cn  L ) )
21 htpyco1.h . . . . 5  |-  ( ph  ->  H  e.  ( F ( K Htpy  L ) G ) )
2220, 21sseldd 3510 . . . 4  |-  ( ph  ->  H  e.  ( ( K  tX  II )  Cn  L ) )
231, 11, 13, 14, 22cnmpt22f 20044 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  ( ( P `  x ) H y ) )  e.  ( ( J  tX  II )  Cn  L ) )
249, 23syl5eqel 2559 . 2  |-  ( ph  ->  N  e.  ( ( J  tX  II )  Cn  L ) )
25 cnf2 19618 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  P  e.  ( J  Cn  K ) )  ->  P : X
--> U. K )
261, 19, 2, 25syl3anc 1228 . . . . . 6  |-  ( ph  ->  P : X --> U. K
)
2726ffvelrnda 6032 . . . . 5  |-  ( (
ph  /\  s  e.  X )  ->  ( P `  s )  e.  U. K )
2819, 3, 6, 21htpyi 21342 . . . . 5  |-  ( (
ph  /\  ( P `  s )  e.  U. K )  ->  (
( ( P `  s ) H 0 )  =  ( F `
 ( P `  s ) )  /\  ( ( P `  s ) H 1 )  =  ( G `
 ( P `  s ) ) ) )
2927, 28syldan 470 . . . 4  |-  ( (
ph  /\  s  e.  X )  ->  (
( ( P `  s ) H 0 )  =  ( F `
 ( P `  s ) )  /\  ( ( P `  s ) H 1 )  =  ( G `
 ( P `  s ) ) ) )
3029simpld 459 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
( P `  s
) H 0 )  =  ( F `  ( P `  s ) ) )
31 simpr 461 . . . 4  |-  ( (
ph  /\  s  e.  X )  ->  s  e.  X )
32 0elunit 11650 . . . 4  |-  0  e.  ( 0 [,] 1
)
33 fveq2 5872 . . . . . 6  |-  ( x  =  s  ->  ( P `  x )  =  ( P `  s ) )
34 id 22 . . . . . 6  |-  ( y  =  0  ->  y  =  0 )
3533, 34oveqan12d 6314 . . . . 5  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( ( P `
 x ) H y )  =  ( ( P `  s
) H 0 ) )
36 ovex 6320 . . . . 5  |-  ( ( P `  s ) H 0 )  e. 
_V
3735, 9, 36ovmpt2a 6428 . . . 4  |-  ( ( s  e.  X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( s N 0 )  =  ( ( P `  s
) H 0 ) )
3831, 32, 37sylancl 662 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 0 )  =  ( ( P `
 s ) H 0 ) )
39 fvco3 5951 . . . 4  |-  ( ( P : X --> U. K  /\  s  e.  X
)  ->  ( ( F  o.  P ) `  s )  =  ( F `  ( P `
 s ) ) )
4026, 39sylan 471 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
( F  o.  P
) `  s )  =  ( F `  ( P `  s ) ) )
4130, 38, 403eqtr4d 2518 . 2  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 0 )  =  ( ( F  o.  P ) `  s ) )
4229simprd 463 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
( P `  s
) H 1 )  =  ( G `  ( P `  s ) ) )
43 1elunit 11651 . . . 4  |-  1  e.  ( 0 [,] 1
)
44 id 22 . . . . . 6  |-  ( y  =  1  ->  y  =  1 )
4533, 44oveqan12d 6314 . . . . 5  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( P `
 x ) H y )  =  ( ( P `  s
) H 1 ) )
46 ovex 6320 . . . . 5  |-  ( ( P `  s ) H 1 )  e. 
_V
4745, 9, 46ovmpt2a 6428 . . . 4  |-  ( ( s  e.  X  /\  1  e.  ( 0 [,] 1 ) )  ->  ( s N 1 )  =  ( ( P `  s
) H 1 ) )
4831, 43, 47sylancl 662 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 1 )  =  ( ( P `
 s ) H 1 ) )
49 fvco3 5951 . . . 4  |-  ( ( P : X --> U. K  /\  s  e.  X
)  ->  ( ( G  o.  P ) `  s )  =  ( G `  ( P `
 s ) ) )
5026, 49sylan 471 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
( G  o.  P
) `  s )  =  ( G `  ( P `  s ) ) )
5142, 48, 503eqtr4d 2518 . 2  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 1 )  =  ( ( G  o.  P ) `  s ) )
521, 5, 8, 24, 41, 51ishtpyd 21343 1  |-  ( ph  ->  N  e.  ( ( F  o.  P ) ( J Htpy  L ) ( G  o.  P
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   U.cuni 4251    o. ccom 5009   -->wf 5590   ` cfv 5594  (class class class)co 6295    |-> cmpt2 6297   0cc0 9504   1c1 9505   [,]cicc 11544   Topctop 19263  TopOnctopon 19264    Cn ccn 19593    tX ctx 19929   IIcii 21247   Htpy chtpy 21335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-icc 11548  df-seq 12088  df-exp 12147  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-topgen 14716  df-psmet 18281  df-xmet 18282  df-met 18283  df-bl 18284  df-mopn 18285  df-top 19268  df-bases 19270  df-topon 19271  df-cn 19596  df-tx 19931  df-ii 21249  df-htpy 21338
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator