MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyco1 Structured version   Visualization version   Unicode version

Theorem htpyco1 22087
Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
htpyco1.n  |-  N  =  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  ( ( P `  x ) H y ) )
htpyco1.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
htpyco1.p  |-  ( ph  ->  P  e.  ( J  Cn  K ) )
htpyco1.f  |-  ( ph  ->  F  e.  ( K  Cn  L ) )
htpyco1.g  |-  ( ph  ->  G  e.  ( K  Cn  L ) )
htpyco1.h  |-  ( ph  ->  H  e.  ( F ( K Htpy  L ) G ) )
Assertion
Ref Expression
htpyco1  |-  ( ph  ->  N  e.  ( ( F  o.  P ) ( J Htpy  L ) ( G  o.  P
) ) )
Distinct variable groups:    x, y, H    x, K, y    x, L, y    ph, x, y   
x, J, y    x, P, y    x, X, y
Allowed substitution hints:    F( x, y)    G( x, y)    N( x, y)

Proof of Theorem htpyco1
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 htpyco1.j . 2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 htpyco1.p . . 3  |-  ( ph  ->  P  e.  ( J  Cn  K ) )
3 htpyco1.f . . 3  |-  ( ph  ->  F  e.  ( K  Cn  L ) )
4 cnco 20359 . . 3  |-  ( ( P  e.  ( J  Cn  K )  /\  F  e.  ( K  Cn  L ) )  -> 
( F  o.  P
)  e.  ( J  Cn  L ) )
52, 3, 4syl2anc 673 . 2  |-  ( ph  ->  ( F  o.  P
)  e.  ( J  Cn  L ) )
6 htpyco1.g . . 3  |-  ( ph  ->  G  e.  ( K  Cn  L ) )
7 cnco 20359 . . 3  |-  ( ( P  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( G  o.  P
)  e.  ( J  Cn  L ) )
82, 6, 7syl2anc 673 . 2  |-  ( ph  ->  ( G  o.  P
)  e.  ( J  Cn  L ) )
9 htpyco1.n . . 3  |-  N  =  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  ( ( P `  x ) H y ) )
10 iitopon 21989 . . . . 5  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
1110a1i 11 . . . 4  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
121, 11cnmpt1st 20760 . . . . 5  |-  ( ph  ->  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  x )  e.  ( ( J  tX  II )  Cn  J ) )
131, 11, 12, 2cnmpt21f 20764 . . . 4  |-  ( ph  ->  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  ( P `  x
) )  e.  ( ( J  tX  II )  Cn  K ) )
141, 11cnmpt2nd 20761 . . . 4  |-  ( ph  ->  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  y )  e.  ( ( J  tX  II )  Cn  II ) )
15 cntop2 20334 . . . . . . . 8  |-  ( P  e.  ( J  Cn  K )  ->  K  e.  Top )
162, 15syl 17 . . . . . . 7  |-  ( ph  ->  K  e.  Top )
17 eqid 2471 . . . . . . . 8  |-  U. K  =  U. K
1817toptopon 20025 . . . . . . 7  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
1916, 18sylib 201 . . . . . 6  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
2019, 3, 6htpycn 22082 . . . . 5  |-  ( ph  ->  ( F ( K Htpy 
L ) G ) 
C_  ( ( K 
tX  II )  Cn  L ) )
21 htpyco1.h . . . . 5  |-  ( ph  ->  H  e.  ( F ( K Htpy  L ) G ) )
2220, 21sseldd 3419 . . . 4  |-  ( ph  ->  H  e.  ( ( K  tX  II )  Cn  L ) )
231, 11, 13, 14, 22cnmpt22f 20767 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  ( ( P `  x ) H y ) )  e.  ( ( J  tX  II )  Cn  L ) )
249, 23syl5eqel 2553 . 2  |-  ( ph  ->  N  e.  ( ( J  tX  II )  Cn  L ) )
25 cnf2 20342 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  P  e.  ( J  Cn  K ) )  ->  P : X
--> U. K )
261, 19, 2, 25syl3anc 1292 . . . . . 6  |-  ( ph  ->  P : X --> U. K
)
2726ffvelrnda 6037 . . . . 5  |-  ( (
ph  /\  s  e.  X )  ->  ( P `  s )  e.  U. K )
2819, 3, 6, 21htpyi 22083 . . . . 5  |-  ( (
ph  /\  ( P `  s )  e.  U. K )  ->  (
( ( P `  s ) H 0 )  =  ( F `
 ( P `  s ) )  /\  ( ( P `  s ) H 1 )  =  ( G `
 ( P `  s ) ) ) )
2927, 28syldan 478 . . . 4  |-  ( (
ph  /\  s  e.  X )  ->  (
( ( P `  s ) H 0 )  =  ( F `
 ( P `  s ) )  /\  ( ( P `  s ) H 1 )  =  ( G `
 ( P `  s ) ) ) )
3029simpld 466 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
( P `  s
) H 0 )  =  ( F `  ( P `  s ) ) )
31 simpr 468 . . . 4  |-  ( (
ph  /\  s  e.  X )  ->  s  e.  X )
32 0elunit 11776 . . . 4  |-  0  e.  ( 0 [,] 1
)
33 fveq2 5879 . . . . . 6  |-  ( x  =  s  ->  ( P `  x )  =  ( P `  s ) )
34 id 22 . . . . . 6  |-  ( y  =  0  ->  y  =  0 )
3533, 34oveqan12d 6327 . . . . 5  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( ( P `
 x ) H y )  =  ( ( P `  s
) H 0 ) )
36 ovex 6336 . . . . 5  |-  ( ( P `  s ) H 0 )  e. 
_V
3735, 9, 36ovmpt2a 6446 . . . 4  |-  ( ( s  e.  X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( s N 0 )  =  ( ( P `  s
) H 0 ) )
3831, 32, 37sylancl 675 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 0 )  =  ( ( P `
 s ) H 0 ) )
39 fvco3 5957 . . . 4  |-  ( ( P : X --> U. K  /\  s  e.  X
)  ->  ( ( F  o.  P ) `  s )  =  ( F `  ( P `
 s ) ) )
4026, 39sylan 479 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
( F  o.  P
) `  s )  =  ( F `  ( P `  s ) ) )
4130, 38, 403eqtr4d 2515 . 2  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 0 )  =  ( ( F  o.  P ) `  s ) )
4229simprd 470 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
( P `  s
) H 1 )  =  ( G `  ( P `  s ) ) )
43 1elunit 11777 . . . 4  |-  1  e.  ( 0 [,] 1
)
44 id 22 . . . . . 6  |-  ( y  =  1  ->  y  =  1 )
4533, 44oveqan12d 6327 . . . . 5  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( P `
 x ) H y )  =  ( ( P `  s
) H 1 ) )
46 ovex 6336 . . . . 5  |-  ( ( P `  s ) H 1 )  e. 
_V
4745, 9, 46ovmpt2a 6446 . . . 4  |-  ( ( s  e.  X  /\  1  e.  ( 0 [,] 1 ) )  ->  ( s N 1 )  =  ( ( P `  s
) H 1 ) )
4831, 43, 47sylancl 675 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 1 )  =  ( ( P `
 s ) H 1 ) )
49 fvco3 5957 . . . 4  |-  ( ( P : X --> U. K  /\  s  e.  X
)  ->  ( ( G  o.  P ) `  s )  =  ( G `  ( P `
 s ) ) )
5026, 49sylan 479 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
( G  o.  P
) `  s )  =  ( G `  ( P `  s ) ) )
5142, 48, 503eqtr4d 2515 . 2  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 1 )  =  ( ( G  o.  P ) `  s ) )
521, 5, 8, 24, 41, 51ishtpyd 22084 1  |-  ( ph  ->  N  e.  ( ( F  o.  P ) ( J Htpy  L ) ( G  o.  P
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904   U.cuni 4190    o. ccom 4843   -->wf 5585   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310   0cc0 9557   1c1 9558   [,]cicc 11663   Topctop 19994  TopOnctopon 19995    Cn ccn 20317    tX ctx 20652   IIcii 21985   Htpy chtpy 22076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-sup 7974  df-inf 7975  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-icc 11667  df-seq 12252  df-exp 12311  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-topgen 15420  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-top 19998  df-bases 19999  df-topon 20000  df-cn 20320  df-tx 20654  df-ii 21987  df-htpy 22079
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator