MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpycc Structured version   Unicode version

Theorem htpycc 20532
Description: Concatenate two homotopies. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
htpycc.1  |-  N  =  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  if ( y  <_ 
( 1  /  2
) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y
)  -  1 ) ) ) )
htpycc.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
htpycc.4  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
htpycc.5  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
htpycc.6  |-  ( ph  ->  H  e.  ( J  Cn  K ) )
htpycc.7  |-  ( ph  ->  L  e.  ( F ( J Htpy  K ) G ) )
htpycc.8  |-  ( ph  ->  M  e.  ( G ( J Htpy  K ) H ) )
Assertion
Ref Expression
htpycc  |-  ( ph  ->  N  e.  ( F ( J Htpy  K ) H ) )
Distinct variable groups:    x, y, J    x, K, y    x, L, y    x, M, y   
x, X, y    ph, x, y
Allowed substitution hints:    F( x, y)    G( x, y)    H( x, y)    N( x, y)

Proof of Theorem htpycc
Dummy variables  s 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 htpycc.2 . 2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 htpycc.4 . 2  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
3 htpycc.6 . 2  |-  ( ph  ->  H  e.  ( J  Cn  K ) )
4 htpycc.1 . . 3  |-  N  =  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  if ( y  <_ 
( 1  /  2
) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y
)  -  1 ) ) ) )
5 iitopon 20435 . . . . 5  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
65a1i 11 . . . 4  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
7 eqid 2438 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
8 eqid 2438 . . . . 5  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  =  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )
9 eqid 2438 . . . . 5  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  =  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )
10 dfii2 20438 . . . . 5  |-  II  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) )
11 0red 9379 . . . . 5  |-  ( ph  ->  0  e.  RR )
12 1red 9393 . . . . 5  |-  ( ph  ->  1  e.  RR )
13 halfre 10532 . . . . . . 7  |-  ( 1  /  2 )  e.  RR
14 0re 9378 . . . . . . . 8  |-  0  e.  RR
15 halfgt0 10534 . . . . . . . 8  |-  0  <  ( 1  /  2
)
1614, 13, 15ltleii 9489 . . . . . . 7  |-  0  <_  ( 1  /  2
)
17 1re 9377 . . . . . . . 8  |-  1  e.  RR
18 halflt1 10535 . . . . . . . 8  |-  ( 1  /  2 )  <  1
1913, 17, 18ltleii 9489 . . . . . . 7  |-  ( 1  /  2 )  <_ 
1
2014, 17elicc2i 11353 . . . . . . 7  |-  ( ( 1  /  2 )  e.  ( 0 [,] 1 )  <->  ( (
1  /  2 )  e.  RR  /\  0  <_  ( 1  /  2
)  /\  ( 1  /  2 )  <_ 
1 ) )
2113, 16, 19, 20mpbir3an 1170 . . . . . 6  |-  ( 1  /  2 )  e.  ( 0 [,] 1
)
2221a1i 11 . . . . 5  |-  ( ph  ->  ( 1  /  2
)  e.  ( 0 [,] 1 ) )
23 htpycc.5 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
24 htpycc.7 . . . . . . . . . . . 12  |-  ( ph  ->  L  e.  ( F ( J Htpy  K ) G ) )
251, 2, 23, 24htpyi 20526 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  X )  ->  (
( s L 0 )  =  ( F `
 s )  /\  ( s L 1 )  =  ( G `
 s ) ) )
2625simprd 463 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  X )  ->  (
s L 1 )  =  ( G `  s ) )
27 htpycc.8 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ( G ( J Htpy  K ) H ) )
281, 23, 3, 27htpyi 20526 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  X )  ->  (
( s M 0 )  =  ( G `
 s )  /\  ( s M 1 )  =  ( H `
 s ) ) )
2928simpld 459 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  X )  ->  (
s M 0 )  =  ( G `  s ) )
3026, 29eqtr4d 2473 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  X )  ->  (
s L 1 )  =  ( s M 0 ) )
3130ralrimiva 2794 . . . . . . . 8  |-  ( ph  ->  A. s  e.  X  ( s L 1 )  =  ( s M 0 ) )
32 oveq1 6093 . . . . . . . . . 10  |-  ( s  =  x  ->  (
s L 1 )  =  ( x L 1 ) )
33 oveq1 6093 . . . . . . . . . 10  |-  ( s  =  x  ->  (
s M 0 )  =  ( x M 0 ) )
3432, 33eqeq12d 2452 . . . . . . . . 9  |-  ( s  =  x  ->  (
( s L 1 )  =  ( s M 0 )  <->  ( x L 1 )  =  ( x M 0 ) ) )
3534rspccva 3067 . . . . . . . 8  |-  ( ( A. s  e.  X  ( s L 1 )  =  ( s M 0 )  /\  x  e.  X )  ->  ( x L 1 )  =  ( x M 0 ) )
3631, 35sylan 471 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  (
x L 1 )  =  ( x M 0 ) )
3736adantrl 715 . . . . . 6  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( x L 1 )  =  ( x M 0 ) )
38 simprl 755 . . . . . . . . 9  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
y  =  ( 1  /  2 ) )
3938oveq2d 6102 . . . . . . . 8  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( 2  x.  y
)  =  ( 2  x.  ( 1  / 
2 ) ) )
40 2cn 10384 . . . . . . . . 9  |-  2  e.  CC
41 2ne0 10406 . . . . . . . . 9  |-  2  =/=  0
4240, 41recidi 10054 . . . . . . . 8  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
4339, 42syl6eq 2486 . . . . . . 7  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( 2  x.  y
)  =  1 )
4443oveq2d 6102 . . . . . 6  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( x L ( 2  x.  y ) )  =  ( x L 1 ) )
4543oveq1d 6101 . . . . . . . 8  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( ( 2  x.  y )  -  1 )  =  ( 1  -  1 ) )
46 1m1e0 10382 . . . . . . . 8  |-  ( 1  -  1 )  =  0
4745, 46syl6eq 2486 . . . . . . 7  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( ( 2  x.  y )  -  1 )  =  0 )
4847oveq2d 6102 . . . . . 6  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( x M ( ( 2  x.  y
)  -  1 ) )  =  ( x M 0 ) )
4937, 44, 483eqtr4d 2480 . . . . 5  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( x L ( 2  x.  y ) )  =  ( x M ( ( 2  x.  y )  - 
1 ) ) )
50 retopon 20322 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
51 iccssre 11369 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( 0 [,] ( 1  /  2
) )  C_  RR )
5214, 13, 51mp2an 672 . . . . . . . 8  |-  ( 0 [,] ( 1  / 
2 ) )  C_  RR
53 resttopon 18745 . . . . . . . 8  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( 0 [,] (
1  /  2 ) )  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
5450, 52, 53mp2an 672 . . . . . . 7  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) )
5554a1i 11 . . . . . 6  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
5655, 1cnmpt2nd 19222 . . . . . 6  |-  ( ph  ->  ( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  x  e.  X  |->  x )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  J )  Cn  J
) )
5755, 1cnmpt1st 19221 . . . . . . 7  |-  ( ph  ->  ( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  x  e.  X  |->  y )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  J )  Cn  (
( topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) ) ) )
588iihalf1cn 20484 . . . . . . . 8  |-  ( z  e.  ( 0 [,] ( 1  /  2
) )  |->  ( 2  x.  z ) )  e.  ( ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  Cn  II )
5958a1i 11 . . . . . . 7  |-  ( ph  ->  ( z  e.  ( 0 [,] ( 1  /  2 ) ) 
|->  ( 2  x.  z
) )  e.  ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  Cn  II ) )
60 oveq2 6094 . . . . . . 7  |-  ( z  =  y  ->  (
2  x.  z )  =  ( 2  x.  y ) )
6155, 1, 57, 55, 59, 60cnmpt21 19224 . . . . . 6  |-  ( ph  ->  ( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  x  e.  X  |->  ( 2  x.  y
) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  J )  Cn  II ) )
621, 2, 23htpycn 20525 . . . . . . 7  |-  ( ph  ->  ( F ( J Htpy 
K ) G ) 
C_  ( ( J 
tX  II )  Cn  K ) )
6362, 24sseldd 3352 . . . . . 6  |-  ( ph  ->  L  e.  ( ( J  tX  II )  Cn  K ) )
6455, 1, 56, 61, 63cnmpt22f 19228 . . . . 5  |-  ( ph  ->  ( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  x  e.  X  |->  ( x L ( 2  x.  y ) ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  J )  Cn  K
) )
65 iccssre 11369 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  / 
2 ) [,] 1
)  C_  RR )
6613, 17, 65mp2an 672 . . . . . . . 8  |-  ( ( 1  /  2 ) [,] 1 )  C_  RR
67 resttopon 18745 . . . . . . . 8  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( ( 1  / 
2 ) [,] 1
)  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
6850, 66, 67mp2an 672 . . . . . . 7  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) )
6968a1i 11 . . . . . 6  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
7069, 1cnmpt2nd 19222 . . . . . 6  |-  ( ph  ->  ( y  e.  ( ( 1  /  2
) [,] 1 ) ,  x  e.  X  |->  x )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  J )  Cn  J
) )
7169, 1cnmpt1st 19221 . . . . . . 7  |-  ( ph  ->  ( y  e.  ( ( 1  /  2
) [,] 1 ) ,  x  e.  X  |->  y )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  J )  Cn  (
( topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) ) ) )
729iihalf2cn 20486 . . . . . . . 8  |-  ( z  e.  ( ( 1  /  2 ) [,] 1 )  |->  ( ( 2  x.  z )  -  1 ) )  e.  ( ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  Cn  II )
7372a1i 11 . . . . . . 7  |-  ( ph  ->  ( z  e.  ( ( 1  /  2
) [,] 1 ) 
|->  ( ( 2  x.  z )  -  1 ) )  e.  ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  Cn  II ) )
7460oveq1d 6101 . . . . . . 7  |-  ( z  =  y  ->  (
( 2  x.  z
)  -  1 )  =  ( ( 2  x.  y )  - 
1 ) )
7569, 1, 71, 69, 73, 74cnmpt21 19224 . . . . . 6  |-  ( ph  ->  ( y  e.  ( ( 1  /  2
) [,] 1 ) ,  x  e.  X  |->  ( ( 2  x.  y )  -  1 ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  J )  Cn  II ) )
761, 23, 3htpycn 20525 . . . . . . 7  |-  ( ph  ->  ( G ( J Htpy 
K ) H ) 
C_  ( ( J 
tX  II )  Cn  K ) )
7776, 27sseldd 3352 . . . . . 6  |-  ( ph  ->  M  e.  ( ( J  tX  II )  Cn  K ) )
7869, 1, 70, 75, 77cnmpt22f 19228 . . . . 5  |-  ( ph  ->  ( y  e.  ( ( 1  /  2
) [,] 1 ) ,  x  e.  X  |->  ( x M ( ( 2  x.  y
)  -  1 ) ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  J )  Cn  K
) )
797, 8, 9, 10, 11, 12, 22, 1, 49, 64, 78cnmpt2pc 20480 . . . 4  |-  ( ph  ->  ( y  e.  ( 0 [,] 1 ) ,  x  e.  X  |->  if ( y  <_ 
( 1  /  2
) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y
)  -  1 ) ) ) )  e.  ( ( II  tX  J )  Cn  K
) )
806, 1, 79cnmptcom 19231 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  if ( y  <_ 
( 1  /  2
) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y
)  -  1 ) ) ) )  e.  ( ( J  tX  II )  Cn  K
) )
814, 80syl5eqel 2522 . 2  |-  ( ph  ->  N  e.  ( ( J  tX  II )  Cn  K ) )
82 simpr 461 . . . 4  |-  ( (
ph  /\  s  e.  X )  ->  s  e.  X )
83 0elunit 11395 . . . 4  |-  0  e.  ( 0 [,] 1
)
84 simpr 461 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  0 )  ->  y  =  0 )
8584, 16syl6eqbr 4324 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  y  <_  (
1  /  2 ) )
86 iftrue 3792 . . . . . . 7  |-  ( y  <_  ( 1  / 
2 )  ->  if ( y  <_  (
1  /  2 ) ,  ( x L ( 2  x.  y
) ) ,  ( x M ( ( 2  x.  y )  -  1 ) ) )  =  ( x L ( 2  x.  y ) ) )
8785, 86syl 16 . . . . . 6  |-  ( ( x  =  s  /\  y  =  0 )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y )  -  1 ) ) )  =  ( x L ( 2  x.  y ) ) )
88 simpl 457 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  x  =  s )
8984oveq2d 6102 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( 2  x.  y )  =  ( 2  x.  0 ) )
90 2t0e0 10469 . . . . . . . 8  |-  ( 2  x.  0 )  =  0
9189, 90syl6eq 2486 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( 2  x.  y )  =  0 )
9288, 91oveq12d 6104 . . . . . 6  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( x L ( 2  x.  y
) )  =  ( s L 0 ) )
9387, 92eqtrd 2470 . . . . 5  |-  ( ( x  =  s  /\  y  =  0 )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y )  -  1 ) ) )  =  ( s L 0 ) )
94 ovex 6111 . . . . 5  |-  ( s L 0 )  e. 
_V
9593, 4, 94ovmpt2a 6216 . . . 4  |-  ( ( s  e.  X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( s N 0 )  =  ( s L 0 ) )
9682, 83, 95sylancl 662 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 0 )  =  ( s L 0 ) )
9725simpld 459 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
s L 0 )  =  ( F `  s ) )
9896, 97eqtrd 2470 . 2  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 0 )  =  ( F `  s ) )
99 1elunit 11396 . . . 4  |-  1  e.  ( 0 [,] 1
)
10013, 17ltnlei 9487 . . . . . . . . 9  |-  ( ( 1  /  2 )  <  1  <->  -.  1  <_  ( 1  /  2
) )
10118, 100mpbi 208 . . . . . . . 8  |-  -.  1  <_  ( 1  /  2
)
102 simpr 461 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  1 )  ->  y  =  1 )
103102breq1d 4297 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( y  <_ 
( 1  /  2
)  <->  1  <_  (
1  /  2 ) ) )
104101, 103mtbiri 303 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  -.  y  <_  ( 1  /  2 ) )
105 iffalse 3794 . . . . . . 7  |-  ( -.  y  <_  ( 1  /  2 )  ->  if ( y  <_  (
1  /  2 ) ,  ( x L ( 2  x.  y
) ) ,  ( x M ( ( 2  x.  y )  -  1 ) ) )  =  ( x M ( ( 2  x.  y )  - 
1 ) ) )
106104, 105syl 16 . . . . . 6  |-  ( ( x  =  s  /\  y  =  1 )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y )  -  1 ) ) )  =  ( x M ( ( 2  x.  y
)  -  1 ) ) )
107 simpl 457 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  x  =  s )
108102oveq2d 6102 . . . . . . . . . 10  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( 2  x.  y )  =  ( 2  x.  1 ) )
109 2t1e2 10462 . . . . . . . . . 10  |-  ( 2  x.  1 )  =  2
110108, 109syl6eq 2486 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( 2  x.  y )  =  2 )
111110oveq1d 6101 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( 2  x.  y )  - 
1 )  =  ( 2  -  1 ) )
112 2m1e1 10428 . . . . . . . 8  |-  ( 2  -  1 )  =  1
113111, 112syl6eq 2486 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( 2  x.  y )  - 
1 )  =  1 )
114107, 113oveq12d 6104 . . . . . 6  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( x M ( ( 2  x.  y )  -  1 ) )  =  ( s M 1 ) )
115106, 114eqtrd 2470 . . . . 5  |-  ( ( x  =  s  /\  y  =  1 )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y )  -  1 ) ) )  =  ( s M 1 ) )
116 ovex 6111 . . . . 5  |-  ( s M 1 )  e. 
_V
117115, 4, 116ovmpt2a 6216 . . . 4  |-  ( ( s  e.  X  /\  1  e.  ( 0 [,] 1 ) )  ->  ( s N 1 )  =  ( s M 1 ) )
11882, 99, 117sylancl 662 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 1 )  =  ( s M 1 ) )
11928simprd 463 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
s M 1 )  =  ( H `  s ) )
120118, 119eqtrd 2470 . 2  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 1 )  =  ( H `  s ) )
1211, 2, 3, 81, 98, 120ishtpyd 20527 1  |-  ( ph  ->  N  e.  ( F ( J Htpy  K ) H ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710    C_ wss 3323   ifcif 3786   class class class wbr 4287    e. cmpt 4345   ran crn 4836   ` cfv 5413  (class class class)co 6086    e. cmpt2 6088   RRcr 9273   0cc0 9274   1c1 9275    x. cmul 9279    < clt 9410    <_ cle 9411    - cmin 9587    / cdiv 9985   2c2 10363   (,)cioo 11292   [,]cicc 11295   ↾t crest 14351   topGenctg 14368  TopOnctopon 18479    Cn ccn 18808    tX ctx 19113   IIcii 20431   Htpy chtpy 20519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-icc 11299  df-fz 11430  df-fzo 11541  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17789  df-xmet 17790  df-met 17791  df-bl 17792  df-mopn 17793  df-cnfld 17799  df-top 18483  df-bases 18485  df-topon 18486  df-topsp 18487  df-cld 18603  df-cn 18811  df-cnp 18812  df-tx 19115  df-hmeo 19308  df-xms 19875  df-ms 19876  df-tms 19877  df-ii 20433  df-htpy 20522
This theorem is referenced by:  phtpycc  20543
  Copyright terms: Public domain W3C validator