HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstorth Structured version   Unicode version

Theorem hstorth 27552
Description: Orthogonality property of a Hilbert-space-valued state. This is a key feature distinguishing it from a real-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hstorth  |-  ( ( ( S  e.  CHStates  /\  A  e.  CH )  /\  ( B  e.  CH  /\  A  C_  ( _|_ `  B ) ) )  ->  ( ( S `
 A )  .ih  ( S `  B ) )  =  0 )

Proof of Theorem hstorth
StepHypRef Expression
1 hstel2 27551 . 2  |-  ( ( ( S  e.  CHStates  /\  A  e.  CH )  /\  ( B  e.  CH  /\  A  C_  ( _|_ `  B ) ) )  ->  ( ( ( S `  A ) 
.ih  ( S `  B ) )  =  0  /\  ( S `
 ( A  vH  B ) )  =  ( ( S `  A )  +h  ( S `  B )
) ) )
21simpld 457 1  |-  ( ( ( S  e.  CHStates  /\  A  e.  CH )  /\  ( B  e.  CH  /\  A  C_  ( _|_ `  B ) ) )  ->  ( ( S `
 A )  .ih  ( S `  B ) )  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842    C_ wss 3414   ` cfv 5569  (class class class)co 6278   0cc0 9522    +h cva 26251    .ih csp 26253   CHcch 26260   _|_cort 26261    vH chj 26264   CHStateschst 26294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-hilex 26330
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-sbc 3278  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-br 4396  df-opab 4454  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-map 7459  df-sh 26538  df-ch 26553  df-hst 27544
This theorem is referenced by:  hstnmoc  27555  hstpyth  27561  hstoh  27564  hst0  27565
  Copyright terms: Public domain W3C validator