MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem3 Structured version   Unicode version

Theorem hsmexlem3 8820
Description: Lemma for hsmex 8824. Clear  I hypothesis and extend previous result by dominance. Note that this could be substantially strengthened, e.g. using the weak Hartogs function, but all we need here is that there be *some* dominating ordinal. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
hsmexlem.f  |-  F  = OrdIso
(  _E  ,  B
)
hsmexlem.g  |-  G  = OrdIso
(  _E  ,  U_ a  e.  A  B
)
Assertion
Ref Expression
hsmexlem3  |-  ( ( ( A  ~<_*  D  /\  C  e.  On )  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  dom  G  e.  (har `  ~P ( D  X.  C
) ) )
Distinct variable groups:    A, a    C, a
Allowed substitution hints:    B( a)    D( a)    F( a)    G( a)

Proof of Theorem hsmexlem3
StepHypRef Expression
1 wdomref 8010 . . . . 5  |-  ( C  e.  On  ->  C  ~<_*  C )
2 xpwdomg 8023 . . . . 5  |-  ( ( A  ~<_*  D  /\  C  ~<_*  C
)  ->  ( A  X.  C )  ~<_*  ( D  X.  C
) )
31, 2sylan2 474 . . . 4  |-  ( ( A  ~<_*  D  /\  C  e.  On )  ->  ( A  X.  C )  ~<_*  ( D  X.  C ) )
4 wdompwdom 8016 . . . 4  |-  ( ( A  X.  C )  ~<_*  ( D  X.  C
)  ->  ~P ( A  X.  C )  ~<_  ~P ( D  X.  C
) )
5 harword 8003 . . . 4  |-  ( ~P ( A  X.  C
)  ~<_  ~P ( D  X.  C )  ->  (har `  ~P ( A  X.  C ) )  C_  (har `  ~P ( D  X.  C ) ) )
63, 4, 53syl 20 . . 3  |-  ( ( A  ~<_*  D  /\  C  e.  On )  ->  (har `  ~P ( A  X.  C ) )  C_  (har `  ~P ( D  X.  C ) ) )
76adantr 465 . 2  |-  ( ( ( A  ~<_*  D  /\  C  e.  On )  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  (har `  ~P ( A  X.  C ) )  C_  (har `  ~P ( D  X.  C ) ) )
8 relwdom 8004 . . . . . 6  |-  Rel  ~<_*
98brrelexi 5046 . . . . 5  |-  ( A  ~<_*  D  ->  A  e.  _V )
109adantr 465 . . . 4  |-  ( ( A  ~<_*  D  /\  C  e.  On )  ->  A  e.  _V )
1110adantr 465 . . 3  |-  ( ( ( A  ~<_*  D  /\  C  e.  On )  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  A  e.  _V )
12 simplr 754 . . 3  |-  ( ( ( A  ~<_*  D  /\  C  e.  On )  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  C  e.  On )
13 simpr 461 . . 3  |-  ( ( ( A  ~<_*  D  /\  C  e.  On )  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  A. a  e.  A  ( B  e.  ~P On  /\  dom  F  e.  C ) )
14 hsmexlem.f . . . 4  |-  F  = OrdIso
(  _E  ,  B
)
15 hsmexlem.g . . . 4  |-  G  = OrdIso
(  _E  ,  U_ a  e.  A  B
)
1614, 15hsmexlem2 8819 . . 3  |-  ( ( A  e.  _V  /\  C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  dom  G  e.  (har `  ~P ( A  X.  C
) ) )
1711, 12, 13, 16syl3anc 1228 . 2  |-  ( ( ( A  ~<_*  D  /\  C  e.  On )  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  dom  G  e.  (har `  ~P ( A  X.  C
) ) )
187, 17sseldd 3510 1  |-  ( ( ( A  ~<_*  D  /\  C  e.  On )  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  dom  G  e.  (har `  ~P ( D  X.  C
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   _Vcvv 3118    C_ wss 3481   ~Pcpw 4016   U_ciun 4331   class class class wbr 4453    _E cep 4795   Oncon0 4884    X. cxp 5003   dom cdm 5005   ` cfv 5594    ~<_ cdom 7526  OrdIsocoi 7946  harchar 7994    ~<_* cwdom 7995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-1st 6795  df-2nd 6796  df-smo 7029  df-recs 7054  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-oi 7947  df-har 7996  df-wdom 7997
This theorem is referenced by:  hsmexlem4  8821  hsmexlem5  8822
  Copyright terms: Public domain W3C validator