MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem1 Structured version   Visualization version   Unicode version

Theorem hsmexlem1 8881
Description: Lemma for hsmex 8887. Bound the order type of a limited-cardinality set of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
hsmexlem.o  |-  O  = OrdIso
(  _E  ,  A
)
Assertion
Ref Expression
hsmexlem1  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  e.  (har `  ~P B ) )

Proof of Theorem hsmexlem1
StepHypRef Expression
1 hsmexlem.o . . . 4  |-  O  = OrdIso
(  _E  ,  A
)
21oicl 8069 . . 3  |-  Ord  dom  O
3 relwdom 8106 . . . . . . . 8  |-  Rel  ~<_*
43brrelexi 4893 . . . . . . 7  |-  ( A  ~<_*  B  ->  A  e.  _V )
54adantl 472 . . . . . 6  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  A  e.  _V )
6 uniexg 6614 . . . . . 6  |-  ( A  e.  _V  ->  U. A  e.  _V )
7 sucexg 6663 . . . . . 6  |-  ( U. A  e.  _V  ->  suc  U. A  e.  _V )
85, 6, 73syl 18 . . . . 5  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  suc  U. A  e.  _V )
91oif 8070 . . . . . . 7  |-  O : dom  O --> A
10 onsucuni 6681 . . . . . . . 8  |-  ( A 
C_  On  ->  A  C_  suc  U. A )
1110adantr 471 . . . . . . 7  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  A  C_  suc  U. A )
12 fss 5759 . . . . . . 7  |-  ( ( O : dom  O --> A  /\  A  C_  suc  U. A )  ->  O : dom  O --> suc  U. A )
139, 11, 12sylancr 674 . . . . . 6  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  O : dom  O --> suc  U. A )
141oismo 8080 . . . . . . . 8  |-  ( A 
C_  On  ->  ( Smo 
O  /\  ran  O  =  A ) )
1514adantr 471 . . . . . . 7  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  ( Smo  O  /\  ran  O  =  A ) )
1615simpld 465 . . . . . 6  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  Smo  O )
17 ssorduni 6638 . . . . . . . 8  |-  ( A 
C_  On  ->  Ord  U. A )
1817adantr 471 . . . . . . 7  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  Ord  U. A
)
19 ordsuc 6667 . . . . . . 7  |-  ( Ord  U. A  <->  Ord  suc  U. A )
2018, 19sylib 201 . . . . . 6  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  Ord  suc  U. A )
21 smorndom 7112 . . . . . 6  |-  ( ( O : dom  O --> suc  U. A  /\  Smo  O  /\  Ord  suc  U. A )  ->  dom  O 
C_  suc  U. A )
2213, 16, 20, 21syl3anc 1276 . . . . 5  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  C_  suc  U. A )
238, 22ssexd 4563 . . . 4  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  e. 
_V )
24 elong 5449 . . . 4  |-  ( dom 
O  e.  _V  ->  ( dom  O  e.  On  <->  Ord 
dom  O ) )
2523, 24syl 17 . . 3  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  ( dom  O  e.  On  <->  Ord  dom  O
) )
262, 25mpbiri 241 . 2  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  e.  On )
27 canth2g 7751 . . . 4  |-  ( dom 
O  e.  _V  ->  dom 
O  ~<  ~P dom  O
)
28 sdomdom 7622 . . . 4  |-  ( dom 
O  ~<  ~P dom  O  ->  dom  O  ~<_  ~P dom  O )
2923, 27, 283syl 18 . . 3  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  ~<_  ~P
dom  O )
30 simpl 463 . . . . . . . . . . 11  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  A  C_  On )
31 epweon 6636 . . . . . . . . . . 11  |-  _E  We  On
32 wess 4839 . . . . . . . . . . 11  |-  ( A 
C_  On  ->  (  _E  We  On  ->  _E  We  A ) )
3330, 31, 32mpisyl 21 . . . . . . . . . 10  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  _E  We  A )
34 epse 4835 . . . . . . . . . 10  |-  _E Se  A
351oiiso2 8071 . . . . . . . . . 10  |-  ( (  _E  We  A  /\  _E Se  A )  ->  O  Isom  _E  ,  _E  ( dom  O ,  ran  O
) )
3633, 34, 35sylancl 673 . . . . . . . . 9  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  O  Isom  _E  ,  _E  ( dom 
O ,  ran  O
) )
37 isof1o 6240 . . . . . . . . 9  |-  ( O 
Isom  _E  ,  _E  ( dom  O ,  ran  O )  ->  O : dom  O -1-1-onto-> ran  O )
3836, 37syl 17 . . . . . . . 8  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  O : dom  O -1-1-onto-> ran  O )
3915simprd 469 . . . . . . . . 9  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  ran  O  =  A )
40 f1oeq3 5829 . . . . . . . . 9  |-  ( ran 
O  =  A  -> 
( O : dom  O -1-1-onto-> ran 
O  <->  O : dom  O -1-1-onto-> A
) )
4139, 40syl 17 . . . . . . . 8  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  ( O : dom  O -1-1-onto-> ran  O  <->  O : dom  O -1-1-onto-> A ) )
4238, 41mpbid 215 . . . . . . 7  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  O : dom  O -1-1-onto-> A )
43 f1oen2g 7611 . . . . . . 7  |-  ( ( dom  O  e.  On  /\  A  e.  _V  /\  O : dom  O -1-1-onto-> A )  ->  dom  O  ~~  A )
4426, 5, 42, 43syl3anc 1276 . . . . . 6  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  ~~  A )
45 endom 7621 . . . . . 6  |-  ( dom 
O  ~~  A  ->  dom 
O  ~<_  A )
46 domwdom 8114 . . . . . 6  |-  ( dom 
O  ~<_  A  ->  dom  O  ~<_*  A )
4744, 45, 463syl 18 . . . . 5  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  ~<_*  A
)
48 wdomtr 8115 . . . . 5  |-  ( ( dom  O  ~<_*  A  /\  A  ~<_*  B
)  ->  dom  O  ~<_*  B
)
4947, 48sylancom 678 . . . 4  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  ~<_*  B
)
50 wdompwdom 8118 . . . 4  |-  ( dom 
O  ~<_*  B  ->  ~P dom  O  ~<_  ~P B )
5149, 50syl 17 . . 3  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  ~P dom  O  ~<_  ~P B )
52 domtr 7647 . . 3  |-  ( ( dom  O  ~<_  ~P dom  O  /\  ~P dom  O  ~<_  ~P B )  ->  dom  O  ~<_  ~P B )
5329, 51, 52syl2anc 671 . 2  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  ~<_  ~P B )
54 elharval 8103 . 2  |-  ( dom 
O  e.  (har `  ~P B )  <->  ( dom  O  e.  On  /\  dom  O  ~<_  ~P B ) )
5526, 53, 54sylanbrc 675 1  |-  ( ( A  C_  On  /\  A  ~<_*  B )  ->  dom  O  e.  (har `  ~P B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1454    e. wcel 1897   _Vcvv 3056    C_ wss 3415   ~Pcpw 3962   U.cuni 4211   class class class wbr 4415    _E cep 4761   Se wse 4809    We wwe 4810   dom cdm 4852   ran crn 4853   Ord word 5440   Oncon0 5441   suc csuc 5443   -->wf 5596   -1-1-onto->wf1o 5599   ` cfv 5600    Isom wiso 5601   Smo wsmo 7089    ~~ cen 7591    ~<_ cdom 7592    ~< csdm 7593  OrdIsocoi 8049  harchar 8096    ~<_* cwdom 8097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-rep 4528  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-ral 2753  df-rex 2754  df-reu 2755  df-rmo 2756  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-pss 3431  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-tp 3984  df-op 3986  df-uni 4212  df-iun 4293  df-br 4416  df-opab 4475  df-mpt 4476  df-tr 4511  df-eprel 4763  df-id 4767  df-po 4773  df-so 4774  df-fr 4811  df-se 4812  df-we 4813  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-pred 5398  df-ord 5444  df-on 5445  df-lim 5446  df-suc 5447  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-isom 5609  df-riota 6276  df-wrecs 7053  df-smo 7090  df-recs 7115  df-er 7388  df-en 7595  df-dom 7596  df-sdom 7597  df-oi 8050  df-har 8098  df-wdom 8099
This theorem is referenced by:  hsmexlem2  8882  hsmexlem4  8884
  Copyright terms: Public domain W3C validator