MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmex Structured version   Unicode version

Theorem hsmex 8844
Description: The collection of hereditarily size-limited well-founded sets comprise a set. The proof is that of Randall Holmes at http://math.boisestate.edu/~holmes/holmes/hereditary.pdf, with modifications to use Hartogs' theorem instead of the weak variant (inconsequentially weakening some intermediate results), and making the well-foundedness condition explicit to avoid a direct dependence on ax-reg 8052. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Assertion
Ref Expression
hsmex  |-  ( X  e.  V  ->  { s  e.  U. ( R1
" On )  | 
A. x  e.  ( TC `  { s } ) x  ~<_  X }  e.  _V )
Distinct variable group:    x, s, X
Allowed substitution hints:    V( x, s)

Proof of Theorem hsmex
Dummy variables  a 
b  c  d  e  f  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4399 . . . . 5  |-  ( a  =  X  ->  (
x  ~<_  a  <->  x  ~<_  X ) )
21ralbidv 2843 . . . 4  |-  ( a  =  X  ->  ( A. x  e.  ( TC `  { s } ) x  ~<_  a  <->  A. x  e.  ( TC `  {
s } ) x  ~<_  X ) )
32rabbidv 3051 . . 3  |-  ( a  =  X  ->  { s  e.  U. ( R1
" On )  | 
A. x  e.  ( TC `  { s } ) x  ~<_  a }  =  { s  e.  U. ( R1
" On )  | 
A. x  e.  ( TC `  { s } ) x  ~<_  X } )
43eleq1d 2471 . 2  |-  ( a  =  X  ->  ( { s  e.  U. ( R1 " On )  |  A. x  e.  ( TC `  {
s } ) x  ~<_  a }  e.  _V  <->  { s  e.  U. ( R1 " On )  | 
A. x  e.  ( TC `  { s } ) x  ~<_  X }  e.  _V )
)
5 vex 3062 . . 3  |-  a  e. 
_V
6 eqid 2402 . . 3  |-  ( rec ( ( d  e. 
_V  |->  (har `  ~P ( a  X.  d
) ) ) ,  (har `  ~P a
) )  |`  om )  =  ( rec (
( d  e.  _V  |->  (har `  ~P ( a  X.  d ) ) ) ,  (har `  ~P a ) )  |`  om )
7 rdgeq2 7115 . . . . . 6  |-  ( e  =  b  ->  rec ( ( f  e. 
_V  |->  U. f ) ,  e )  =  rec ( ( f  e. 
_V  |->  U. f ) ,  b ) )
8 unieq 4199 . . . . . . . 8  |-  ( f  =  c  ->  U. f  =  U. c )
98cbvmptv 4487 . . . . . . 7  |-  ( f  e.  _V  |->  U. f
)  =  ( c  e.  _V  |->  U. c
)
10 rdgeq1 7114 . . . . . . 7  |-  ( ( f  e.  _V  |->  U. f )  =  ( c  e.  _V  |->  U. c )  ->  rec ( ( f  e. 
_V  |->  U. f ) ,  b )  =  rec ( ( c  e. 
_V  |->  U. c ) ,  b ) )
119, 10ax-mp 5 . . . . . 6  |-  rec (
( f  e.  _V  |->  U. f ) ,  b )  =  rec (
( c  e.  _V  |->  U. c ) ,  b )
127, 11syl6eq 2459 . . . . 5  |-  ( e  =  b  ->  rec ( ( f  e. 
_V  |->  U. f ) ,  e )  =  rec ( ( c  e. 
_V  |->  U. c ) ,  b ) )
1312reseq1d 5093 . . . 4  |-  ( e  =  b  ->  ( rec ( ( f  e. 
_V  |->  U. f ) ,  e )  |`  om )  =  ( rec (
( c  e.  _V  |->  U. c ) ,  b )  |`  om )
)
1413cbvmptv 4487 . . 3  |-  ( e  e.  _V  |->  ( rec ( ( f  e. 
_V  |->  U. f ) ,  e )  |`  om )
)  =  ( b  e.  _V  |->  ( rec ( ( c  e. 
_V  |->  U. c ) ,  b )  |`  om )
)
15 eqid 2402 . . 3  |-  { s  e.  U. ( R1
" On )  | 
A. x  e.  ( TC `  { s } ) x  ~<_  a }  =  { s  e.  U. ( R1
" On )  | 
A. x  e.  ( TC `  { s } ) x  ~<_  a }
16 eqid 2402 . . 3  |- OrdIso (  _E  ,  ( rank " (
( ( e  e. 
_V  |->  ( rec (
( f  e.  _V  |->  U. f ) ,  e )  |`  om )
) `  z ) `  y ) ) )  = OrdIso (  _E  , 
( rank " ( ( ( e  e.  _V  |->  ( rec ( ( f  e.  _V  |->  U. f
) ,  e )  |`  om ) ) `  z ) `  y
) ) )
175, 6, 14, 15, 16hsmexlem6 8843 . 2  |-  { s  e.  U. ( R1
" On )  | 
A. x  e.  ( TC `  { s } ) x  ~<_  a }  e.  _V
184, 17vtoclg 3117 1  |-  ( X  e.  V  ->  { s  e.  U. ( R1
" On )  | 
A. x  e.  ( TC `  { s } ) x  ~<_  X }  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1405    e. wcel 1842   A.wral 2754   {crab 2758   _Vcvv 3059   ~Pcpw 3955   {csn 3972   U.cuni 4191   class class class wbr 4395    |-> cmpt 4453    _E cep 4732    X. cxp 4821    |` cres 4825   "cima 4826   Oncon0 5410   ` cfv 5569   omcom 6683   reccrdg 7112    ~<_ cdom 7552  OrdIsocoi 7968  harchar 8016   TCctc 8199   R1cr1 8212   rankcrnk 8213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-smo 7050  df-recs 7075  df-rdg 7113  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-oi 7969  df-har 8018  df-wdom 8019  df-tc 8200  df-r1 8214  df-rank 8215
This theorem is referenced by:  hsmex2  8845
  Copyright terms: Public domain W3C validator