MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homahom2 Structured version   Unicode version

Theorem homahom2 14906
Description: The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homahom.h  |-  H  =  (Homa
`  C )
homahom.j  |-  J  =  ( Hom  `  C
)
Assertion
Ref Expression
homahom2  |-  ( Z ( X H Y ) F  ->  F  e.  ( X J Y ) )

Proof of Theorem homahom2
StepHypRef Expression
1 df-br 4293 . . . 4  |-  ( Z ( X H Y ) F  <->  <. Z ,  F >.  e.  ( X H Y ) )
2 homahom.h . . . . 5  |-  H  =  (Homa
`  C )
3 eqid 2443 . . . . 5  |-  ( Base `  C )  =  (
Base `  C )
42homarcl 14896 . . . . 5  |-  ( <. Z ,  F >.  e.  ( X H Y )  ->  C  e.  Cat )
5 homahom.j . . . . 5  |-  J  =  ( Hom  `  C
)
62, 3homarcl2 14903 . . . . . 6  |-  ( <. Z ,  F >.  e.  ( X H Y )  ->  ( X  e.  ( Base `  C
)  /\  Y  e.  ( Base `  C )
) )
76simpld 459 . . . . 5  |-  ( <. Z ,  F >.  e.  ( X H Y )  ->  X  e.  ( Base `  C )
)
86simprd 463 . . . . 5  |-  ( <. Z ,  F >.  e.  ( X H Y )  ->  Y  e.  ( Base `  C )
)
92, 3, 4, 5, 7, 8elhoma 14900 . . . 4  |-  ( <. Z ,  F >.  e.  ( X H Y )  ->  ( Z
( X H Y ) F  <->  ( Z  =  <. X ,  Y >.  /\  F  e.  ( X J Y ) ) ) )
101, 9sylbi 195 . . 3  |-  ( Z ( X H Y ) F  ->  ( Z ( X H Y ) F  <->  ( Z  =  <. X ,  Y >.  /\  F  e.  ( X J Y ) ) ) )
1110ibi 241 . 2  |-  ( Z ( X H Y ) F  ->  ( Z  =  <. X ,  Y >.  /\  F  e.  ( X J Y ) ) )
1211simprd 463 1  |-  ( Z ( X H Y ) F  ->  F  e.  ( X J Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   <.cop 3883   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   Basecbs 14174   Hom chom 14249  Homachoma 14891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-homa 14894
This theorem is referenced by:  homahom  14907
  Copyright terms: Public domain W3C validator