MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homa1 Structured version   Unicode version

Theorem homa1 15007
Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homahom.h  |-  H  =  (Homa
`  C )
Assertion
Ref Expression
homa1  |-  ( Z ( X H Y ) F  ->  Z  =  <. X ,  Y >. )

Proof of Theorem homa1
StepHypRef Expression
1 df-br 4391 . . . 4  |-  ( Z ( X H Y ) F  <->  <. Z ,  F >.  e.  ( X H Y ) )
2 homahom.h . . . . 5  |-  H  =  (Homa
`  C )
3 eqid 2451 . . . . 5  |-  ( Base `  C )  =  (
Base `  C )
42homarcl 14998 . . . . 5  |-  ( <. Z ,  F >.  e.  ( X H Y )  ->  C  e.  Cat )
5 eqid 2451 . . . . 5  |-  ( Hom  `  C )  =  ( Hom  `  C )
62, 3homarcl2 15005 . . . . . 6  |-  ( <. Z ,  F >.  e.  ( X H Y )  ->  ( X  e.  ( Base `  C
)  /\  Y  e.  ( Base `  C )
) )
76simpld 459 . . . . 5  |-  ( <. Z ,  F >.  e.  ( X H Y )  ->  X  e.  ( Base `  C )
)
86simprd 463 . . . . 5  |-  ( <. Z ,  F >.  e.  ( X H Y )  ->  Y  e.  ( Base `  C )
)
92, 3, 4, 5, 7, 8elhoma 15002 . . . 4  |-  ( <. Z ,  F >.  e.  ( X H Y )  ->  ( Z
( X H Y ) F  <->  ( Z  =  <. X ,  Y >.  /\  F  e.  ( X ( Hom  `  C
) Y ) ) ) )
101, 9sylbi 195 . . 3  |-  ( Z ( X H Y ) F  ->  ( Z ( X H Y ) F  <->  ( Z  =  <. X ,  Y >.  /\  F  e.  ( X ( Hom  `  C
) Y ) ) ) )
1110ibi 241 . 2  |-  ( Z ( X H Y ) F  ->  ( Z  =  <. X ,  Y >.  /\  F  e.  ( X ( Hom  `  C
) Y ) ) )
1211simpld 459 1  |-  ( Z ( X H Y ) F  ->  Z  =  <. X ,  Y >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   <.cop 3981   class class class wbr 4390   ` cfv 5516  (class class class)co 6190   Basecbs 14276   Hom chom 14351  Homachoma 14993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-id 4734  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-ov 6193  df-homa 14996
This theorem is referenced by:  homadm  15010  homacd  15011  homadmcd  15012
  Copyright terms: Public domain W3C validator