MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hof2val Unicode version

Theorem hof2val 14308
Description: The morphism part of the Hom functor, for morphisms  <. f ,  g >. : <. X ,  Y >. --> <. Z ,  W >. (which since the first argument is contravariant means morphisms  f : Z --> X and  g : Y --> W), yields a function (a morphism of  SetCat) mapping  h : X --> Y to  g  o.  h  o.  f : Z --> W. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m  |-  M  =  (HomF
`  C )
hofval.c  |-  ( ph  ->  C  e.  Cat )
hof1.b  |-  B  =  ( Base `  C
)
hof1.h  |-  H  =  (  Hom  `  C
)
hof1.x  |-  ( ph  ->  X  e.  B )
hof1.y  |-  ( ph  ->  Y  e.  B )
hof2.z  |-  ( ph  ->  Z  e.  B )
hof2.w  |-  ( ph  ->  W  e.  B )
hof2.o  |-  .x.  =  (comp `  C )
hof2.f  |-  ( ph  ->  F  e.  ( Z H X ) )
hof2.g  |-  ( ph  ->  G  e.  ( Y H W ) )
Assertion
Ref Expression
hof2val  |-  ( ph  ->  ( F ( <. X ,  Y >. ( 2nd `  M )
<. Z ,  W >. ) G )  =  ( h  e.  ( X H Y )  |->  ( ( G ( <. X ,  Y >.  .x. 
W ) h ) ( <. Z ,  X >.  .x.  W ) F ) ) )
Distinct variable groups:    B, h    h, F    h, G    ph, h    C, h    h, H    h, W    .x. , h    h, X    h, Y    h, Z
Allowed substitution hint:    M( h)

Proof of Theorem hof2val
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofval.m . . 3  |-  M  =  (HomF
`  C )
2 hofval.c . . 3  |-  ( ph  ->  C  e.  Cat )
3 hof1.b . . 3  |-  B  =  ( Base `  C
)
4 hof1.h . . 3  |-  H  =  (  Hom  `  C
)
5 hof1.x . . 3  |-  ( ph  ->  X  e.  B )
6 hof1.y . . 3  |-  ( ph  ->  Y  e.  B )
7 hof2.z . . 3  |-  ( ph  ->  Z  e.  B )
8 hof2.w . . 3  |-  ( ph  ->  W  e.  B )
9 hof2.o . . 3  |-  .x.  =  (comp `  C )
101, 2, 3, 4, 5, 6, 7, 8, 9hof2fval 14307 . 2  |-  ( ph  ->  ( <. X ,  Y >. ( 2nd `  M
) <. Z ,  W >. )  =  ( f  e.  ( Z H X ) ,  g  e.  ( Y H W )  |->  ( h  e.  ( X H Y )  |->  ( ( g ( <. X ,  Y >.  .x.  W )
h ) ( <. Z ,  X >.  .x. 
W ) f ) ) ) )
11 simplrr 738 . . . . 5  |-  ( ( ( ph  /\  (
f  =  F  /\  g  =  G )
)  /\  h  e.  ( X H Y ) )  ->  g  =  G )
1211oveq1d 6055 . . . 4  |-  ( ( ( ph  /\  (
f  =  F  /\  g  =  G )
)  /\  h  e.  ( X H Y ) )  ->  ( g
( <. X ,  Y >.  .x.  W ) h )  =  ( G ( <. X ,  Y >.  .x.  W ) h ) )
13 simplrl 737 . . . 4  |-  ( ( ( ph  /\  (
f  =  F  /\  g  =  G )
)  /\  h  e.  ( X H Y ) )  ->  f  =  F )
1412, 13oveq12d 6058 . . 3  |-  ( ( ( ph  /\  (
f  =  F  /\  g  =  G )
)  /\  h  e.  ( X H Y ) )  ->  ( (
g ( <. X ,  Y >.  .x.  W )
h ) ( <. Z ,  X >.  .x. 
W ) f )  =  ( ( G ( <. X ,  Y >.  .x.  W ) h ) ( <. Z ,  X >.  .x.  W ) F ) )
1514mpteq2dva 4255 . 2  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  -> 
( h  e.  ( X H Y ) 
|->  ( ( g (
<. X ,  Y >.  .x. 
W ) h ) ( <. Z ,  X >.  .x.  W ) f ) )  =  ( h  e.  ( X H Y )  |->  ( ( G ( <. X ,  Y >.  .x. 
W ) h ) ( <. Z ,  X >.  .x.  W ) F ) ) )
16 hof2.f . 2  |-  ( ph  ->  F  e.  ( Z H X ) )
17 hof2.g . 2  |-  ( ph  ->  G  e.  ( Y H W ) )
18 ovex 6065 . . . 4  |-  ( X H Y )  e. 
_V
1918mptex 5925 . . 3  |-  ( h  e.  ( X H Y )  |->  ( ( G ( <. X ,  Y >.  .x.  W )
h ) ( <. Z ,  X >.  .x. 
W ) F ) )  e.  _V
2019a1i 11 . 2  |-  ( ph  ->  ( h  e.  ( X H Y ) 
|->  ( ( G (
<. X ,  Y >.  .x. 
W ) h ) ( <. Z ,  X >.  .x.  W ) F ) )  e.  _V )
2110, 15, 16, 17, 20ovmpt2d 6160 1  |-  ( ph  ->  ( F ( <. X ,  Y >. ( 2nd `  M )
<. Z ,  W >. ) G )  =  ( h  e.  ( X H Y )  |->  ( ( G ( <. X ,  Y >.  .x. 
W ) h ) ( <. Z ,  X >.  .x.  W ) F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916   <.cop 3777    e. cmpt 4226   ` cfv 5413  (class class class)co 6040   2ndc2nd 6307   Basecbs 13424    Hom chom 13495  compcco 13496   Catccat 13844  HomFchof 14300
This theorem is referenced by:  hof2  14309  hofcllem  14310  hofcl  14311  yonedalem3b  14331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-hof 14302
  Copyright terms: Public domain W3C validator