MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hof2 Structured version   Unicode version

Theorem hof2 15380
Description: The morphism part of the Hom functor, for morphisms  <. f ,  g >. : <. X ,  Y >. --> <. Z ,  W >. (which since the first argument is contravariant means morphisms  f : Z --> X and  g : Y --> W), yields a function (a morphism of  SetCat) mapping  h : X --> Y to  g  o.  h  o.  f : Z --> W. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m  |-  M  =  (HomF
`  C )
hofval.c  |-  ( ph  ->  C  e.  Cat )
hof1.b  |-  B  =  ( Base `  C
)
hof1.h  |-  H  =  ( Hom  `  C
)
hof1.x  |-  ( ph  ->  X  e.  B )
hof1.y  |-  ( ph  ->  Y  e.  B )
hof2.z  |-  ( ph  ->  Z  e.  B )
hof2.w  |-  ( ph  ->  W  e.  B )
hof2.o  |-  .x.  =  (comp `  C )
hof2.f  |-  ( ph  ->  F  e.  ( Z H X ) )
hof2.g  |-  ( ph  ->  G  e.  ( Y H W ) )
hof2.k  |-  ( ph  ->  K  e.  ( X H Y ) )
Assertion
Ref Expression
hof2  |-  ( ph  ->  ( ( F (
<. X ,  Y >. ( 2nd `  M )
<. Z ,  W >. ) G ) `  K
)  =  ( ( G ( <. X ,  Y >.  .x.  W ) K ) ( <. Z ,  X >.  .x. 
W ) F ) )

Proof of Theorem hof2
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 hofval.m . . 3  |-  M  =  (HomF
`  C )
2 hofval.c . . 3  |-  ( ph  ->  C  e.  Cat )
3 hof1.b . . 3  |-  B  =  ( Base `  C
)
4 hof1.h . . 3  |-  H  =  ( Hom  `  C
)
5 hof1.x . . 3  |-  ( ph  ->  X  e.  B )
6 hof1.y . . 3  |-  ( ph  ->  Y  e.  B )
7 hof2.z . . 3  |-  ( ph  ->  Z  e.  B )
8 hof2.w . . 3  |-  ( ph  ->  W  e.  B )
9 hof2.o . . 3  |-  .x.  =  (comp `  C )
10 hof2.f . . 3  |-  ( ph  ->  F  e.  ( Z H X ) )
11 hof2.g . . 3  |-  ( ph  ->  G  e.  ( Y H W ) )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hof2val 15379 . 2  |-  ( ph  ->  ( F ( <. X ,  Y >. ( 2nd `  M )
<. Z ,  W >. ) G )  =  ( h  e.  ( X H Y )  |->  ( ( G ( <. X ,  Y >.  .x. 
W ) h ) ( <. Z ,  X >.  .x.  W ) F ) ) )
13 simpr 461 . . . 4  |-  ( (
ph  /\  h  =  K )  ->  h  =  K )
1413oveq2d 6298 . . 3  |-  ( (
ph  /\  h  =  K )  ->  ( G ( <. X ,  Y >.  .x.  W )
h )  =  ( G ( <. X ,  Y >.  .x.  W ) K ) )
1514oveq1d 6297 . 2  |-  ( (
ph  /\  h  =  K )  ->  (
( G ( <. X ,  Y >.  .x. 
W ) h ) ( <. Z ,  X >.  .x.  W ) F )  =  ( ( G ( <. X ,  Y >.  .x.  W ) K ) ( <. Z ,  X >.  .x. 
W ) F ) )
16 hof2.k . 2  |-  ( ph  ->  K  e.  ( X H Y ) )
17 ovex 6307 . . 3  |-  ( ( G ( <. X ,  Y >.  .x.  W ) K ) ( <. Z ,  X >.  .x. 
W ) F )  e.  _V
1817a1i 11 . 2  |-  ( ph  ->  ( ( G (
<. X ,  Y >.  .x. 
W ) K ) ( <. Z ,  X >.  .x.  W ) F )  e.  _V )
1912, 15, 16, 18fvmptd 5953 1  |-  ( ph  ->  ( ( F (
<. X ,  Y >. ( 2nd `  M )
<. Z ,  W >. ) G ) `  K
)  =  ( ( G ( <. X ,  Y >.  .x.  W ) K ) ( <. Z ,  X >.  .x. 
W ) F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113   <.cop 4033   ` cfv 5586  (class class class)co 6282   2ndc2nd 6780   Basecbs 14486   Hom chom 14562  compcco 14563   Catccat 14915  HomFchof 15371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-hof 15373
This theorem is referenced by:  yon12  15388  yon2  15389
  Copyright terms: Public domain W3C validator